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Preface

Those of us who have to formulate solutions for industrial applications can adopt
two extreme positions with respect to how we go about it. The first way is to rely
on intuition and experience, "how it's always been done". The second is to dig
deep into profound theory in the hope that the answers will be found there.

My experience with formulators around the world is that the "intuition" strategy
is overwhelmingly popular and deeply unsatisfactory. And my own experience
with high-powered solubility theory is that it is often a long-winded way of getting
nowhere. However much of it | read, | could seldom use it to solve a problem.

In writing this book | am doing what | always try to do: finding the minimum
amount of theory that gives the maximum amount of benefit. In the case of
solubility I have found that five bits of theory give me this mini-max. Four of
these bits of theory are well-known. The fifth is little known and yet will feature
strongly in this book because it is of huge practical importance. Here is what lies
at the heart of this book:

» |deal Solubility theory for a crystalline solid simply tells you (mostly from its
melting point) the maximum solubility you are likely to have without special
effects. Simple and useful, and amazingly little-known.

» Hansen Solubility Parameters (HSP). Many readers will have heard of these.
They are a 50-year old way of determining the best match between solutes
(polymers, crystalline solids, nanoparticles, pigments ...) and solvents by
providing three numbers for each solute or solvent which describe the van
der Waals, polar and H-bonding capabilities. HSP are usable by experts and
non-experts and cope well with the messy realities of a formulator's life. They
have never gone out of fashion but recently they have experienced a boom in
popularity, partly due to the HSPIP software of which | am co-author.

« COSMO-RS. The COnductor Screening MOdel - Realistic Solvents approach
relies on deep thermodynamics and one-off quantum chemical calculations
to allow highly accurate solubility (and related) predictions. One of the many
reasons for the popularity of COSMO-RS is that even for those who do not
fully understand how it works, the key components of COSMO-RS have a
strong visual element that helps explain where the numbers are coming from.

« DLVO. This is the standard theory for dispersions and along with the idea of
zeta potential and steric hindrance it is the only particle-specific tool that |
have found to be of any practical benefit. There is universal agreement that
DLVO has many faults and it is highly unlikely that (a) we know the exact
inputs and (b) that the outputs are correct, but the general principles certainly
help us to create some order out of a very complex system.

« KB theory. Kirkwood-Buff theory is the one that most people have never
heard about. If you read the original 1951 paper it is highly likely that the 4
pages will mean as little to you as they did to me. However, it turns out that
KB is rather easy to grasp and much more intuitive than all those things about



entropy, enthalpy, fugacity, standard states etc. which many of us were taught
at some time and which most of us forgot as soon as possible. The real
justification for including KB here is that from some rather trivial experimental
data it is possible to resolve debates that have been raging for decades
about solubility and solubilization, especially in the context of more complex
systems in water where "water structure" and "hydrophobic forces" turn out to
be as unnecessary as they have been confusing.

Even though the five ideas are not all that hard, | make the assumption that,

like me, you cannot just see a formula and immediately grasp what it means. |
have therefore linked the book to my large collection of "apps" that, wherever
possible, do all the hard work for us so we can see (just by messing around with
sliders) how the different parameters affect the outcome and, at the same time,
provide the numerical answers you might need for a specific problem.

The apps run on all modern browsers, on phones, tablets and laptops, are free,
free from ads and spyware and are safe to run on corporate networks because
they are standard HTML5/CSS3/JavaScript. The code is all open source and |
am always delighted to fix any bugs or add extra features if they will be helpful to
someone.

If this were a Wikipedia article it would have lots of citation needed dotted through
the text. When | write books, rather than academic papers, my choice is for a
"reference lite" approach. References that seem to me to be key are provided
and | add the occasional footnote if it seems appropriate. If anyone needs a
citation for anything that | say, just let me know and | will be happy to provide it.

Some readers will be surprised to find that there is no chapter on crystallisation,
which depends on solubility and yet there is a chapter on diffusion which,

to many people, seems to be unrelated to solubility. | seriously considered
crystallisation but in the end | have nothing useful to say as it is all about delicate
balances of supersaturation, seeding, polymorphs etc. for which | can find
nothing that can be put in a pragmatic app. Diffusion, on the other hand, makes
little sense without understanding how it is strongly dependent on solubility
issues and diffusion apps can teach the practical formulator about many things.

To my surprise, the final chapter is about the language we (mis)use to talk about
solubility. The more literature that | read in order to write the book, the more |
realised that many of the problems of solubility science arise from the way we
frame the questions. By asking a question in a manner that pre-supposes one
type of answer, many superior ways of getting an answer are automatically
blocked. | believe that the approach here asks questions in a manner that is far
more likely to produce actionable answers.

The downside to my approach in this book is that | might not cover some
solubility area of interest to a specific reader. One of the many advantages of



publishing a free eBook is that | can respond quickly to feedback. Obviously
I'm happy to fix errors and typos. But if you want a section or chapter on some
solubility issue not covered here, I'm happy to see if it's the sort of thing | can
learn adequately and for which a set of apps would bring the ideas to life. Any
help is always gratefully acknowledged.
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Abbreviations and Symbols

API
AUC
BCF
CMC
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cryo-TEM
DLVO
DFT
DOSY
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H-bond
HSP
HSPiP
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IL

KB

KBI

KT
LP-TEM
MAC
MD
MHC
MPt
MSR
MVol
MWt
NADES
NOESY
NTA

PE
PM(E)MA
PNIPAM
RDF

RT

Active Pharmaceutical Ingredient

Analytical UltraCentrifuge or UltraCentrifugation
Burton, Cabrera and Frank crystal growth theory
Critical Micelle Concentration

Crystal Nucleation Theory

COnductor Screening MOdel - Realistic Solvation
Cryogenic Transmission Electron Microscopy
Derjaguin and Landau, Verwey and Overbeek theory
Density Functional Theory

Diffusion-Ordered NMR Spectroscopy
Polyethylene vinyl alcohol

Hydrogen bond

Hansen Solubility Parameter(s)

Hansen Solubility Parameters in Practice

High Throughput (robotic) techniques

lonic Liquid

Kirkwood-Buff theory

Kirkwood-Buff Integral

Boltzmann Constant times Absolute Temperature — thermal energy
Liquid Phase Transmission Electron Microscopy
Minimum Aggregation Concentration

Molecular Dynamics

Minimum Hydrotrope Concentration

Melting Point

Molar Solubility Ratio

Molar Volume

Molecular Weight

Natural Deep Eutectic Solvent

Nuclear Overhauser Effect Spectroscopy
Nanoparticle Tracking Analysis

Polyethylene

PolyMethyl (or Ethyl) Methacrylate

Poly N-isoPropyl Acetamide

Radial Distribution Function

Gas Constant times Absolute Temperature — thermal energy



SAXS
SANS
scCO2

SNT
TEM
TMAO

Small Angle X-ray Scattering
Small Angle Neutron Scattering
Supercritical Carbon Dioxide

Secondary Nucleation Threshold
Transmission Electron Microscopy

Trimethylamine N-oxide (also called TMNO)



1 Solubility Basics

Solubility seems such an easy concept that it is hard to imagine that anyone
would bother to write a book about it. You add a solute to a solvent, give it a stir
and it dissolves. Or you add solute to a hot solvent, give it a stir, dissolve it, then
let it cool and watch nice crystals fall out of solution. Or you have a nice solution
and add another solvent to it and a solute falls out. How hard can it be to provide
the scientific tools to make sense of solubility?

At university | was taught that it is so hard to make sense of solubility that |
shouldn’t waste my time trying to do so. And every time | came across the
thermodynamics of solutions | was reminded why that was such good advice. If
you open just about any book on solubility thermodynamics you will find that the
formulae (of which there are many) are not especially hard. They are generally
confusing because they are full of subscripts and superscripts, 0’s and *’s that
make subtle distinctions between one thing and another. But they are not in
themselves hard. The key problem is that 10 pages later you are none the
wiser. To me, thermodynamics is like a bad joke that never seems to reach the
punchline. It’s not so much that it is hard for most of us but that it seems to be
pointless.

Worse than that, the slightest error in a subtle distinction and everything that
follows is erroneous. You may explicitly know the distinction between constant
pressure and constant volume, but it is easy to make an implicit assumption and
end up totally wrong. Highly-trained thermodynamicists have come unstuck by,
for example, confusing (perhaps implicitly) molarity with molality.

Faced with this, the vast majority of those who have to cope with solubility
issues use vague terms like "hydrophilic" versus "hydrophobic”, or "polar”
versus "non-polar". To demonstrate how useless these terms can be, here is a
(slightly modified) quote from an academic paper: "X is hydrophobic because it
is insoluble in water so we therefore dissolved it in ethanol". If their definition of
"hydrophobic" means something soluble in ethanol, what term do they use for
something that is soluble in heptane?

Other attempts involve the sciencey logK_,, (logP) the octanol/water partition
coefficient. This single number has near mythical status, yet it is absurd to
think that you can encapsulate much of importance about a molecule via a
single number. In another context | wrote the sentence: "To take an example
at random, the logK,,, values (found at ChemSpider) of ethyl iodide and
terephthalic acid are both 2.0, yet they are different in so many ways: aliphatic
vs. aromatic, halogenated vs. non-halogenated, liquid vs. solid at room
temperature, non-polar vs. polar".

There are plenty of alternatives such as Kauri-Butanol Number (don't ask),
Kamlet-Taft (3 parameters that regularly appear in correlations but which have



never proved of decisive value), and we will later analyse some of the more
popular schemes that never quite made it. The problem is that this babel of
ideas creates its own confusion and most of us simply give up.

| started to get seriously interested in understanding solubility via a mix of
desperation and chance. The desperation was due to some intractable (to me)
solubility issues with some polymers being used in coatings. The chance was
meeting Dr Charles Hansen who had developed Hansen Solubility Parameters,
HSP, some decades earlier. HSP turned out to be amazingly useful in solving my
immediate problems and | grew to use them over a wide range of applications.
The theory behind them (“regular solution theory”) is simple enough that | could
get the general idea without having to fuss too much over the details, yet deep
enough to have at least a reasonable grounding in real thermodynamics.

After a while | got reasonably comfortable with the few approaches that provide
at least some utility to the solubility world: HSP, UNIFAC (and its variants),
NRTL-SAC, Abraham Parameters, COSMO-RS. In practice, UNIFAC is too
expensive for most of us as the vast array of required parameters are accessible
only to those with deep pockets - though from time to time | have used the
public domain parameters that work adequately for many molecules. NRTL-SAC
and Abraham Parameters, for all their elegance, don’t seem to have a broad-
enough user base to have flourished. COSMO-RS will be discussed at length as
it is immensely powerful and built on some concepts that are at the same time
thermodynamically rigorous and chemically intuitive.

But then | stumbled across “solubilizers” — molecules that aren’t especially good
or useful as solvents but which can increase the solubility of solutes in other
solvents — especially water. These seemed to lack any useful predictive tools
and it quickly became clear that my favourite tools, HSP and COSMO-RS were
useless in this context. Indeed, the whole area of solubilizers turned out to be
confusing because everyone was using similar words (such as “hydrotrope” or
“solvosurfactant”) to describe these effects, whilst the word “hydrotrope” was
also used to describe unrelated ideas (such as skin-friendly surfactants or
microemulsions). Again we have solubility confused by a babel of languages.

That is when | came across Kirkwood-Buff (KB) theory. Like everything

else in solution thermodynamics it is as dry as dust and seems to have no
connection to reality. | would quite happily have remained in total ignorance of
KB. However, the key idea of KB theory is conceptually simple and, unlike the
rest of solution thermodynamics, can be used across the whole spectrum of
solubility issues — from the mixing of liquids to the folding of proteins, from dilute
to concentrated solutions. Even better, some rather simple (though admittedly
tedious) measurements give you all the information you need to untangle what is
going on. The theory is “assumption free”, so is not built on a bunch of idealised
concepts (such as infinitely dilute solutions) that tend to be the basis for much of
the thermodynamics we are supposed to be using.



Despite its great power KB theory is almost unknown. One of my missions in
this book is to popularise KB. So my rendition of KB will be bare bones, omitting
many of the niceties that occupy the lives of professional thermodynamicists.
The niceties are important, but they get in the way of the core message

and my concern is the core message. | am grateful that there are brains far
smarter than mine that enjoy the intellectual challenge of dealing with abstract
thermodynamics. My job is to take their accomplishments and show how we can
all use KB to produce clarity to solubility issues which have often been mired in
decades of arcane thermodynamic disputes.

Let me give you two key examples.

First, the many oddities of water as a solvent have produced endless papers

on why solute X will be more soluble in the presence of hydrotrope Y or why
protein A is more or less folded' in the presence of additive B. The mysterious
“‘water structure” has been invoked endlessly as an explanation, shedding, as it
happens, no clarity at all on the matter. A few KB calculations, on the other hand,
can reveal from rather simple experimental data exactly what is interacting with
what and therefore causing the increase in solubility or the change in folding. So
far, the results show overwhelmingly that “water structure” is of minor or even
zero importance.

Second, there continues to be endless debates on entropy/enthalpy
compensation. The heart of the debate is that most of us feel comfortable

with enthalpic effects — we can understand why a molecule may be in a

higher or lower energy state in the presence of a different molecule — but feel
uncomfortable with entropic effects. Annoyingly, data often suggest that an
intuitively-understood change in enthalpy is offset by a compensating effect in
entropy; in other words, if there is stronger enthalpic binding, which is good for
solubility there is a decrease in disorder, so entropy is decreased which is bad
for solubility. The reason that this problem arises so often is that much of the
thermodynamics of solubility (including HSP) is based on enthalpic arguments,
yet the frequent apparent compensation by entropy renders enthalpic arguments
useless. KB, however, works naturally in the free energy domain and describes
molecular interactions in a manner such that entropy/enthalpy “explanations”
do not arise. The problem with entropy and enthalpy is not that they are wrong,
but that they are too crude; they are bulk values whereas we are interested in
molecular explanations, which KB produce very naturally.

Having given you an outline of what | want to do, let us get going on the one bit
of modestly hard work in the entire book by introducing the core concepts. Each
concept is rather straightforward and an app is always at hand if needed to bring
ideas alive. Remember that this stuff is so easy that even | understand it.

1 The world of protein/polymer effects uses numerous terms (e.g. coiled, extended, globular, native, denatured)
in ways that | find confusing. | find the neutral terms "folded" and "unfolded" to be much more useful and have
used these terms as much as possible.



1.1 The core concepts

1.1.1 Concentration

Thermodynamicists seem to love to torture us by shifting between concentration
terms for no apparent good reason. They also shift between symbols for
concentration. Although using just one concentration scale might seem
attractive, it quickly becomes clear that two scales are necessary.

x is Mole Fraction. The great thing about mole fraction is that we know that it
always goes from 0 to 1. When you have added no chemical its mole fraction is
0 and when you have the pure chemical its mole fraction is 1. This means that
graphs with mole fraction along the X axis allow automatic comparison of what
happens with any chemical.

c is Molar concentration, Molarity, in mol/l. This is the real world — how much
stuff we actually have. When x=1 for water we have ¢c=55.6 mole/l, because

we have 1000g of water and its MWt is 18, so c=1000/18 mol/l. When x=1 for
acetone we have c=791/58=13.6 mol/l. You can see why x is so clean — a graph
of water concentration would go from 0 to 55.6 and that of acetone concentration
would go from 0 to 13.6, but in terms of x both go from O to 1.

Of course we sometimes have to use Wt% for real world, but that will not
appear in any thermodynamic equations. Surprisingly (to me) Volume %, @ is
thermodynamically meaningful so appears from time to time in this book.

There is another solubility term that can appear in thermodynamics, Molality,
which is solubility in g/1000g and is usually shown as m. Because the word is
so similar to Molarity it was easy to imagine that it was invented purely to torture
those who had to study thermodynamics. Actually it is rather a sensible unit.
As we will see, the way that volumes change during solvation (another way

of saying that densities change) are crucial to understanding the processes
involved. This has the unfortunate side effect of leaving you unsure what c is at
any point. You will always know how many moles you have at any given mix,
but you cannot be certain of the volume (it makes no difference if you added
known volumes or known weights) so the molarity is uncertain. If you work in
molality you never have these uncertainties as you always know the weights

of everything present. Despite this distinct advantage, few of us habitually use
molality so m will not appear again in this book.

If you read thermodynamic papers you will often find n (or N) as a measure

of concentration. This is the "number density", i.e. the number of moles per
unit volume. In other words, n is a confusing way to talk about c. One equally
finds p used for this "number density", which is even more confusing given that
the actual density, p, is often required; p is used here exclusively as density.
Because thermodynamicists regularly speak a confusing language | should



mention that the term "co-solvent" is often used to describe the addition of a
solid such as urea or sucrose. Having got used to the term | can see why they
might want to use it, though it is very unhelpful to the general reader.

1.1.2 MVol

The next term is really easy: Molar Volume, MVol. This is the volume occupied
by one mole of the chemical. Calculating it is apparently straightforward from the
molecular weight, MWt and density p:

MVol - Mwt _ g/ mol

Equ. 1-1 p  gle

=cc/ mol

As | find it useful to check the “dimensions” of an equation, MWt is in g/

mol, density is in g/cc so MVol is cc/mol. Of course | could use real units, kg/
mol and kg/m? and express MVol in m3*/mol. One of the huge problems in
thermodynamics is units. MWt is universally expressed in g/mol so that is why it
is common to use density in g/cc and end up with MVol in cc/mol. Should | have
said g/mole instead of g/mol? In the early draft | fluctuated between the two and
decided that mol is cleaner.

The use of “apparently” was a warning about another thermodynamical nicety.
The MVol of something that, out of solution, is a solid is not MWt/p_ ... Instead
the density is that of a “virtual liquid”. This is annoying, but makes sense.
When the solid is dissolved in the liquid its “density” excludes all the special
interactions that make it a solid in the first place, hence we need a virtual
density. Even if we don’t know the virtual density, at least we know that it will
never be higher than its solid density, so we have some idea of what the MVol
might be.

Who cares about MVol? Surprisingly MVol and p are hugely important for
grasping what is happening within a solution. Although thermodynamicists
love to talk about “partial molar volume” the word “partial” adds no value to
our discussions, so we will just use MVol. The phrase is used in the context of
mixtures of chemicals where the effective density of each chemical is affected
by the local environment. So if we have chemicals 1 and 2, and chemical

1 is present at mole fraction x, then MVol, at concentration x and MVol, at
concentration (1-x) are “partial molar volumes” to thermodynamicists and
“‘MVols” to us. In each case they are MWt/p; it is the p of each component that
changes across the solubility range.

My fight against unhelpful nomenclature will continue throughout this book.
While writing it | had to read a draft of a paper on COSMO-RS theory. It was
fascinating but | was thrown by the fact that it was concerned only with the



“residual” energy of the system. Why wasn’t it concerned with the “main” energy
of the system? It turns out that what you and | would call the main energy,
thermodynamicists decided to call “residual” because it was the residue when
you removed some standard boring terms of no interest to anyone. You can see
why a thermodynamicist might want to name the molar volume “partial” when
the chemical of interest is only part of the whole, or "residual” when it is obvious
to them that it is the significant residue, but it doesn’t add useful clarity and
certainly adds confusion.
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The next concept is u, the chemical potential, in units of J/mol. Those who

have met u before will be aware that almost immediately it gets festooned with
superscripts and subscripts: u°_ and such like. There are very good reasons (the
problem of “standard states”) why the careful thermodynamicist must festoon

M with such things, but for our purposes we just need plain p. We are familiar
with potential energy in physical objects. A ball at the top of a hill has a positive
potential energy and will happily roll down the hill. A ball at the bottom of a
valley has a negative potential energy and the only way it can move is if there

is an even deeper valley or if some other form of energy is applied to lift it up.
Chemical potential is exactly the same. A system with a high, positive, chemical
potential will want to lose that energy and change its state. A system with a large
negative chemical potential is highly stable.

An internet search shows plenty of articles starting “Most chemists do not
understand chemical potential so here we explain how simple and useful it is”
continuing with long explanations that convince me that it is neither simple nor
genuinely usable by most of us. | cannot avoid using it, but as long as you get
the general idea, that is all you need. The relationship of y to more familiar
concepts is described in the following two sections.
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Free energy, G, is similar in concept to chemical potential though it represents
the whole system rather than just the “chemical” part of the system. We have
all been taught that large negative G is stable, and large, positive G is unstable.
This simple statement happens to be false, so we shall come back to this in a
moment and see why chemical potential is so much more useful. It is deeply
unfortunate that the key variables, to be described later, in KB theory are also
called Gij, G with a pair of subscripts; these are the KB Integrals, KBls. | will

try to enforce the rule that all plain G values are free energy and all double-
subscripted G, values are KBls.

When | spoke about hills and valleys | omitted to mention the flat, neutral,
planes. They are a sort of reference level and if this were a real thermodynamics
book we would now spend a lot of time discussing “standard states”. If | live



on the Tibetan plateau, | might regard that as my standard state because it is
easy to walk downhill from that plateau and hard to walk up the hills above the
plateau. Yet to those of us who live near sea level, the Tibetan plateau is very
far from our standard state as it requires a large amount of energy to reach

it. If you are doing precise thermodynamics it is vital that everyone agrees on
the standard state. In this book we will just assume that the standard state is
“obvious” and discuss it no more. This is not entirely disreputable. My version
of KB works because high-powered thermodynamicists have done all the hard
work to get the definitions correct. | greatly appreciate their hard work so that
you don’t have to expend the effort.

Now it is time to see how G and u are inter-related:

Equ. 1-2 oc
where c is the concentration.

We shall see that when it comes to mixing two chemicals, this equation is super-
important. It is often said that a mixture is stable if its free energy is negative.
Because of the problem of standard states, this statement is plain wrong. The
definition of stability is that 0G/dc is negative (i.e. a negative chemical potential,
as discussed above) and that 6°G/ oc? is positive (a more subtle point | won't
discuss further).

The fact that y and G are related via a derivative is deeply unfortunate.
Knowing a single free energy tells you nothing about the chemical potential.
Although KB theory is assumption-free, we invariably end up having to use
derivatives of things like free energy, which means that we need multiple points
in concentration space from which the derivative can be derived either as (G@
-G_,)/(c,-c,) or by fitting the data to (say) a polynomial and calculating the

cl @c2
derivative. If the polynomial is x+y.c+z.c? then the derivative at c is y+2z.c.
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We cannot avoid a and vy, activity and activity coefficient. Activity is the effective
concentration (or whatever is the key measure of interest) of a solute and activity
coefficient is the ratio of activity to real concentration. So if the real mole fraction
concentration is 0.15 and the solute behaves (e.g. by having a higher vapour
pressure) as if it has a concentration of 0.3, a=0.3 and y=2.

Equ. 1-3 a=xy

Because so many of us are uncomfortable with chemical potential, it is a relief to
know that it relates directly to activity, with which most of us are comfortable:



Equ. 1-4 #=RTIn(a)

Another pair of terms which often appears are “fugacity” and “fugacity
coefficient”. Real thermodynamicists are happy to use them in places where |
use activity and activity coefficient, but as the terms are much more associated
with vapours “fleeing” from a liquid and because in this book we are generally
interested in solubility of crystalline solids, polymers, nanoparticles etc. | won't
use the term again. If, in general reading, | substitute “activity” for “fugacity” |
generally find that it does little harm.

1.1.6 And a few other things

We have already mentioned the controversy around enthalpy and entropy. By
using KB we can escape the largely fruitless debate and will not have to do any
calculations featuring the two properties. However, when it comes to day-to-day
useful techniques such as Flory-Huggins theory of polymer solubility we will
note in passing that some of the terms cover the necessary entropic parts of
the theory. Fortunately the use of entropy is so simple (perhaps simplistic) that
we can describe the terms very easily and use the formulae with confidence
without getting mired in any of the subtleties.

Because MVol and density are both necessary, we will see that pressure, P, can
be a useful parameter, in particular with scCO2 (supercritical carbon dioxide).

A lot of thermodynamics involves P but because most of us work at 1 bar, and
because significant P-effects require 100 bar pressures, we miss out on a lot

of good stuff except when we have to use high pressures for scCO2. Because
we do not have to involve P outside scCO2, we will assume that our intuitions
about P are reliable and it will be discussed no more.

There is another type of pressure, 1, the osmotic pressure. We can regard this
as the physical manifestation (i.e. you can measure it with a pressure gauge)
of the chemical potential. So by measuring I in some systems we can find

out about p and via KB can grasp what is going on with our solute and solvent
molecules. As most of us have not seen an osmometer since (perhaps) college
days, I will appear only rarely in what follows.

1.2 KB theory

Normally before embarking on the theory of statistical thermodynamics, the
reader would be urged to be patient because despite the pain or tedium it will
all make sense. With KB there is no need for pain or tedium?. It is all rather

2 | have endured much pain and tedium in trying to understand KB sufficiently well to provide a painless
explanation. Thermodynamicists have minds that thrive on abstract entities and cannot comprehend why people
like me do not find their abstractions as meaningful as they do.



straightforward and the key concepts link exactly to the intuitions of anyone who
has played with solvents and solutes.

Although KB are painless, | still need to explain why your life will be improved if
you go to the trouble of reading through what follows. So I offer you a guarantee.
| guarantee that armed with the intuitive ideas behind KB and numbers called
Kirkwood-Buff Integrals (KBIs), you will be able to understand a huge variety

of solubility issues with clarity and ease. As we shall find throughout this book,
many solubility puzzles are solved via simple arithmetic: "this KBl is large, this
one is small, this one is irrelevant so, therefore, the solubility effect is explained
by the large KBI." It doesn't get simpler, or more powerful, than that.

Let us start with a simple observation. A molecule doesn’t know if it is a solvent,
a solute, a hydrotrope or anything. All it knows is that it is surrounded by other
molecules. So although we will give molecules labels such as Aand B or 1 and
2, they are only for our convenience and there are no special rules (such as the
need for infinite dilution) to restrict what we are doing.

Now imagine yourself looking out from one of the molecules at the molecules
around you. They are constantly jiggling around due to thermal motion and it is
a bit confusing at first, but over time it is clear that there are three very simple
rules. The first two rules are the same whether you are surrounded just by
molecules identical to yours (i.e. this is a pure solvent) or have one, two or many
different types of molecule around you. Here are the three rules:

1. Any molecule (including the central one) in a given position means that there
is an exclusion zone extending over the volume of that molecule plus the
volume of other molecules — i.e. molecules cannot overlap. This is trivially
obvious. And yet already you can see that MVol is going to play a key role in
how molecules can interact. The “excluded volume” effect is often the simple
explanation for effects that have caused decades of confusion, especially in
the case of proteins and other polymers.

2. It is possible to count the average numbers of different types of molecules
in the immediate neighbourhood then stretching out far into the bulk of the
system. Note how general this statement is. It is not at all the same as saying
“We can look out and see a solvent shell”. If you have not met the phrase
“solvent shell” then life is easy for you. If you have met it then the chances
are that you have some clear idea of what it means. This (and | speak from
my own experience) idea is almost certainly false. Just forget about “solvent
shells” and think about this extended sea of molecules, each of which you can
count, from nearby into the far distance.

3. You will notice that on average some types of molecules, for whatever reason,
tend to prefer to be together. We are not talking about specific interactions
such as complexes, simply of a general trend for there to be more, say, 1’s
near 2 than would be expected by chance.



From those three rules the whole of KB theory follows. Because if we can know
how much 1 prefers to be with 1 than with 2, or how much 2 likes to be near 1 if
3 is also present then we can understand why 1 is a good (or bad) solvent for 2
and whether 3 can help or hinder the solubilization of 2 in 1.

In principle we can calculate the results of the three rules. In practice this is
currently impossible, even for those with a spare supercomputer. The reason is
not that the calculations are especially hard. Rather it is because the outcome is
the balance of many small interactions and the slightest error in the estimation
of the interactions (e.g. a slight mis-choice in the force field of a molecular
dynamics (MD) calculation) is enough to tip the balance in the wrong direction.

Happily we can measure these things via rather simple (though generally
boring) techniques. So although we cannot achieve prediction we can achieve
understanding which is almost as good. The only reason | am spending any
time with KB is because it is a path to enlightenment absent from all the other
thermodynamic theories that are out there. KB theory was developed in 19513
(the paper is only 4 pages!) but was not much used because the key values
could neither be calculated nor measured. It was Arieh Ben-Naim who first
worked out how to derive the values from (simple) experimental measurements
and those who want to dig deeply into KB should read Ben-Naim’s wonderful
book Molecular Theory of Solutions®*.

At last we can reveal a typical KB formula for a mix of two molecules 1 and 2.
The equation is taken straight out of the original KB paper:

%: 1
Equ. 1-5 oc (a(1+la(Cﬂ{—(i2))

This tells us that the change (per mole) of chemical potential of molecule 1 with
respect to the (molar) concentration of 1, c,, depends on the concentration of 1,
on RT, the gas constant times absolute temperature and, finally on the so-called
KB integrals G,,, and G,,.

What does this mean? The change of chemical potential in a system where the
molecules aren’t bothered whether they are associated with themselves or other
molecules is simply RT/c. This is because in such a system all the Gij values

are the same so the terms cancel out. In systems where 1 prefers to be with 1
than with 2 then G, > G, so the Gij in the equation start to matter. The equation
for the change of chemical potential with molarity is very natural for those of us
who think in terms of molar concentrations. It is less natural for creating graphs

3 J. G. Kirkwood and F. P. Buff, The statistical mechanical theory of solutions. I, J. Chem. Phys. 19, 774-777,
1951

4 Arieh Ben-Naim, Molecular Theory of Solutions, OUP, 2006



in apps because there is no simple way to plot the whole solubility range from
0-100% of 1 (and 100-0% of 2). For plotting convenience, therefore, we use
mole fraction. The equivalent equation (which contains a c, term but we can
still do the plot across the x, range) is derived from the previous equation by a
bit of algebra that need not concern us and provides us with a very nice way of
thinking about the relative G, values:

O _ Ry !
Sx, X, (1+x1c2 (G, +G,, —2(;12))

Equ. 1-6

Now we have the important term G ,+G_,-2G,, which sums up much of what
you need to know about KB — it represents both of the self-association terms
and how they compare to the cross-association term which is multiplied by 2
because it contains G, and G,, which are identical.

What are these Gij values? They are called KB integrals (KBI) and are formally
defined based on the integral of the radial distribution function between i and |
where i and j might be the same or different molecules. The radial distribution
function (invariably shown as g,) can be considered as the relative number of
molecules of type j around molecules of type i at distance r, compared to the
bulk number. This immediately brings to mind ideas of solvent shells that some
of us have been brought up on. Please forget these - they are deceptive and
confusing. The radial distribution functions are statistical averages and are far
better thought of in terms of relative densities, P;- This gives us the definition at
radius r with respect to the bulk density:

Equ. 1-7

It is helpful to get a feel for both g, and Gu from a simple radial distribution
function (RDF) app:



Radial Distribution Functions
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App 1-1 https://www.stevenabbott.co.uk/practical-solubility/rdf.php

From the definition based on densities (rather than our normal intuition of radial
distribution functions counting j's around i’'s and i’s around j’s) it is clear that 9,=9;-
The integrals, GJ are derived from the rdfs via the integral term, G = I41Tr2(g 1)
which simply describe the number of i-j pairs more (or less) than the average
using the -1 to remove the background level. It naturally follows that Gij = Gji
because the counts are pairwise. Again the intuition suggests that the number
of i molecules around j’'s will be different from j molecules around i’s, but the Gij
values are global averages throughout the solution, hence the equality of ij and ji.
Note that the G, integration also involves the radius, r, via the 4mr* term, because
there is a bigger volume in which to count the numbers of molecules. You will
notice that the relatively gentle fluctuation in the values of g; at higher radii are
amplified in G, because of the 41rr* term.

Fortunately it is very easy to grasp, in general, what these KB integrals mean. If,
when there are similar numbers of 1 and 2 molecules, G, is greater than G_, it
means that 1 prefers to be near 1 rather than near 2. Indeed, G, , can frequently
be negative, i.e. there are fewer 1-2 interactions than would be expected on
average. So in our first equation a larger G, will result in a smaller change in
chemical potential which is the same as saying that 1 is less happy to go into

a mixture with 2 than if it had no preference. When G, is negative, which is
often the case if G,, and G, are positive then, because it appears as - G, in the
equation, that reinforces the fact that this is an unhappy mixture. If G, is more
positive then 1 positively likes being surrounded by 2’s, so is happier to be in
solution.

The same thing can be seen with the bigger picture that opens up when mole

fractions are used. Now we compare G, +G,, with 2G,,, in other words, are the


https://www.stevenabbott.co.uk/practical-solubility/rdf.php

total attractions of 1 for 1 and 2 for 2 greater than the mutual attractions of 1 and
27

Those who happen to be familiar with regular solution theory (or who come back
here after we've discussed it in a later chapter) will see a parallel with the 11, 22
and 12 terms that are commonly discussed in that theory. The huge advantage
of KB is that there are no approximations (there are many in regular solution
theory) and no tying oneself in knots about “geometric means” and such like. But
if you are already comfortable with the thinking behind regular solutions then KB
presents no new problems.

There is one more number that can be calculated from the KB integrals. Some
find it helpful and focus on it, others are less keen on it. Either way it is important
to know about it. The number is the excess number N which is the number

of i's around j in excess of what would be expected from a random mixture,
remembering as always that i and j can be the same molecule, so we can have
the excess number of i's around i and j’'s around j via N, and NJ.J..

The definition is:

Equ. 1-8 N, =¢(G,-G")

Unlike Gij the definition of N; (which has the c, term) means that it is different
from NJ.i , SO the excess number of j's around i is not necessarily the excess
number of i’'s around j.

The definition also shows the problem with Nij. Because it is an excess number

it has to be referenced against a standard so it requires a definition of the ideal
KB integral, i.e. the one where there are no special interactions. There is a large
literature debating quite how to calculated that ideal value. The niceties do not
concern us at present and as it is a number we can readily relate to we will use it
from time to time and it features in the app.

It is very important not to think of “solvent shells” or “complexes”. If NU. =2 that
does not mean that there are 2 i’s sitting neatly next to a j and if Nij=1 that
certainly does not mean that there is an i-j binary complex. These are statistical
numbers saying that on average each j is seeing Nij more i's spreading out into
the distance than it would have seen on average. This will make more sense
when we explore these numbers in the app.

So far we have been building up intuitions about what these KB integrals mean.
Now it is time to see them in action within the basic KB app. At this stage we
shall ignore the complexities of densities (which form the top portion of the app)
and look at the basics of KBlIs.



1.21  Getting a feeling for G, and N, values

This app takes some simple, familiar inputs and allows the user to see all the
relevant Gij values. How they are calculated is discussed in the next section. For
now, focus on the inputs and outputs.
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App 1-2 https://www.stevenabbott.co.uk/practical-solubility/kbgs.php

The inputs are the familiar MWt and MWt, and two “W" parameters. For those
who happen to know about Wilson /\ij (“large lambda”) parameters the numbers
will make sense. For now treat them as ways to adjust the activity coefficients of
the two solvents. When both W values are 1 then the solution is ideal - neither
solvent is bothered by the presence of the other and the activity coefficients are
1 across the whole mole fraction range of x. from 0 to 1. Because the graphs are
auto-scaling you might think that when the W values are both near 1 that there
are massive changes in activity coefficient, but when you look at the scale you
will see that they are hovering very close to 1.

If both W values are less than 1 then this is the common example of a solvent
and solute that don’t like each other and the activity coefficients are higher than
1. If (and this is rare, for example with chloroform/acetone which attract each
other) both values are greater than 1 then the activity coefficients are less than
1. You can generate a huge variety of activity coefficient shapes just by playing
with the W values.

The MWt parameters have no affect on the activity curves as these depend only
on mole fraction.


https://www.stevenabbott.co.uk/practical-solubility/kbgs.php

Now look at the Gij curves. Assuming you have the default values with W~0.3
and MWt~100 then the activity coefficients are large, i.e. 1 doesn’t like being in
2 and 2 doesn'’t like being in 1. What does this look like in terms of KB integrals?
Because there is nothing mysterious about them we can answer the question
before looking at the graphs. 1’s will prefer to be with 1’s and 2's with 2's, so G,
and G,, will both be positive over most of the range, approaching 0 in pure 1 or
pure 2. Because 1’s dislike 2’s, there will be less 1-2 interaction than expected
from random mixing, so G,, (which, of course, is the same as G,, which we don't
have to plot) goes negative and is most negative when there are equal numbers
of 1’'s and 2’s.

Keeping the same settings, then we find that the ideal Gij values are
uninteresting and finally we can look at the excess numbers N,. Here we find
that N,, and N, are identical (only one is visible) with about 1.5 extra molecules
around at the maximum point of a 50:50 mix. N., and N, are different but
symmetrical with about 1 fewer molecule of 2 around 1 or of 1 around 2. In all
the apps you can use the cursor to get detailed readout from the graphs.

You can develop your intuitions by changing the input parameters. Altering MWt
values changes the symmetry of the curves in ways that are not trivial to work
out. Try, for example, doubling MWt.. This decreases the maximum value of

G,, because there is so much 1 in the mixture because of its size that the self-
association through dislike of 2 does not make a huge difference. At the same
time it increases G,, because 2s sees a lot more 1 in the solution so are on
average closer together than they would have been.

If you change both W values to 2, giving strong solvent-solute interactions, then
the curves all flip in a manner that should by now make sense.

We are almost there. There is one question avoided up to now. Although we
can make some sense of whether N, is 0. 1, 1 or 10 because we can imagine
0.1, 1 or 10 extra molecules, what are we to make of G values? First, what
are the units? They are cc/mol, the same as MVol (WhICh will be discussed
again shortly), but that still doesn't tell us what they mean. | look at them as
describing how much of the volume of the solution is taken up by non-average
local concentrations. When we get (as we must, but only briefly) to discussing
Fluctuation Theory this view should make more sense.

It is worth taking stock before going further. Why are we bothering about KB
integrals and excess numbers? Because, as my guarantee stated, they are

a uniquely powerful way to look inside a solution to see what is going on.
Although in these examples we already know from the activity coefficients
that solvent and solute like or dislike each other, the activity coefficients give
no numerical insight at the molecular level. This is common feature with most
classical thermodynamics and one which causes a lot of problems. With

KB we get intuitively useful numbers that can be compared and contrasted



between different systems and which map onto our chemical understanding of
why two molecules may or may not like each other. We shall also see clearly
that the effect of molecular size, which is otherwise hard to grasp, is rather
straightforward because of "excluded volume" effects. This is already a powerful
case for KB but is not enough to convince me to write a book based on them.
We will find that when we have three components the insights from KB are not
just nice-to-have, they are must-have.

1.2.2 Measuring Gij values

As mentioned earlier, there are currently no good methods for reliably calculating
these Gij values from molecular details of real world systems, though modern
MD systems are getting better each year. Because the ideas behind these
values are rather easy to visualise, it is not so hard to get a general idea of the
relative sizes of these terms — you will know in general if 1 and 2 are similar,
dissimilar or even complementary (i.e. they have something like complementary
hydrogen bond donors and acceptors). Such intuitions can work reasonably
when there is approximately equal 1 and 2. But how does G,, compare to G,
when there aren’t so many 1 molecules around? That is harder to intuit and of
great importance because we are rarely interested in 50:50 solubility. We really
do need to know the numbers across a significant (ideally the whole) mole
fraction range so it is unfortunate that we cannot yet calculate them.

If that were the end of the story then this whole KB section would be a waste of
time for those interested in real world solubility. What saves the situation is that
we can, with modest effort, measure the Gij values.

To understand how this can be so, we need to dig a bit deeper into what is going
on. In the preceding app we calculated the KB integrals from some assumed
activity coefficients. Because we know that these can be readily measured

(e.g. via vapour pressure measurements) in the sort of simple two-solvent
system implied, it is already clear that a chain of logic exists to go from activity
coefficients to KB integrals. By deliberately ignoring the density inputs of the app
we missed out another key requirement for calculating the integrals.

In the case of a two-component system we know that simply from looking at the
rate of change of chemical potential, which in the app was derived from activity
coefficients, we have all the information needed to calculate the difference
between G, and G,,. This is because of the definition of KB integrals seen
previously, along with the fact that y=RTIn(a):

1
Equ. 1-9 ¢ Ll(”cl(Gn_Glz)J



To know the individual G, values we need a source of data other than activity
coefficients, i.e. we need two equations for two unknowns®. This is the reason
we introduced the idea of MVol. Merely by measuring how the MVol of one of
the components changes with its concentration we can gain new information.
How is this possible? If each component self-associates exactly as it does as a
pure liquid then the MVol of each component will be unchanged. However, if, for
example, there are strong 1-2 associations then the MVol of each component
is going to be different. Because MVol is simply MWt/density, by measuring

the density of the solution containing known molar amounts of 1 and 2 we

can extract the MVol data. It should be no surprise that there is a connection
between MVol and KB integrals - their units of cc/mol are identical.

Here is the formal set of relationships that link activity coefficients and MVols to
the KB integrals. Experts will note the omission of the isothermal compressibility
term which is ignored in this book because the term is insignificant in the context
of the large effects that interest us in practice. Note, for reference, that these are
the famous Ben-Naim KB inversion equations which made it possible to link KB
to experiments:

1 c¢MVolc,
Gii =——+— -
Equ. 1-10 ¢, ¢.D
_ MVolMVolc,,
Equ. 1-11 D
oln(a Oln(y,
_x oy _ oMn(a) |  Oin(y)
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Equ. 1-12
This tells us that G, and G,, are calculated knowing:

« the individual molar concentrations along with c_ which is the sum of the two
concentrations

» the MVol of the other molecule at that specific concentration

« the parameter D which is related to the chemical potential or, equivalently, the
activity or activity coefficient.

The mixed value G, needs the total concentration and the individual MVols at
the concentration of interest. D brings in the other experimental data, the activity
coefficients. It is shown in its three equivalent forms as it is easy to get confused
when reading the literature. Note that D does not have a subscript because

it is the same value if calculated via 1 or 2. Note, too, as | have found to my

5 You might think that we have two activity coefficients to give us two datapoints. However, thanks to the Gibbs-
Duhem relationship, if you know one coefficient then you know the other, so we only get one datapoint.



cost, that small errors in calculating D can cause the G, values to explode at
small values of ¢, because D values become the difference between two large
numbers.

So now “all” we need is the MVol. values. Where do these come from? From
density data, of course.

As it happens, almost no one measures densities of solutions. WWhy would
anyone bother — it seems such a low-tech and boring property? It is entirely
understandable but deeply unfortunate that most of us have no density data

on any of the solutions of interest to us. If they were commonly available then
extensive KB data mining could take place. One reason for writing this book is
to encourage the solubility community to get into the habit of obtaining these
measurements. Those who imagine (as | did) that density measurements require
the weighing of an accurately measured 100ml of liquid will be pleased to know
that fully automatic density measurements need a few ul of sample to produce
values significant to 4 or 5 decimal places, more than good enough to extract
MVol values and therefore to calculate G, values. Relatively low-cost in-line
density meters are especially useful for high throughput (HT) KB determination.

Unfortunately we need three tedious steps to be able to extract the MVol values
from density.

Knowing the density of the solution of 2in 1 p,, . and the density of the pure
solvent 1, p, we can calculate an apparent MVol, which is the naive value
assuming that 1 and 2 do not affect each other:

MVOZZAPP — lp1 = P + MWtz

Equ. 1-13 G, e £

Then from the apparent MVol the real one can be calculated:

1000 —c,MVol | SMVol™

App nz
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Equ. 1-14 2

MVol, = MVol™ +

Finally, knowing the molar volume of pure 1, Mvol, . the MVol of 1 can be
calculated:
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Equ. 1-15 2

MVol =

Admittedly all this is rather tedious. And | can assure you that doing it in real life
without decent apps is genuinely tedious. It is such a long chain of reasoning
with lots of chances for a minor error in one of the links in the chain which will
then invalidate the results. Tedious, yes, but not especially hard. It is, after all,
mostly high school arithmetic and attention to detail. Once the process is set up
properly to go from experimental data to KB integrals and excess numbers, it is
not hard at all.

And the gains are huge. By combining the data from density with the data from
(say) vapour pressures, you have access to deeply meaningful, assumption-
free statistical thermodynamic numbers which have the bonus of possessing an
intuitive meaning that we non-thermodynamicists can relate to.

So now we can go back to the app and see what the density curves are telling
us.

1.2.3 Information from density

Density seems such a humble measure that it is hard to imagine that a curve of
density versus x, would reveal anything of interest.
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Figure 1-1 Nothing much happens with the density defaults

With the default, to make it simple to grasp the basics of the KB integrals, the
density is a constant 1g/cc. The 4 p settings are for the polynomial p=p, + p, X,
.P, X2+ p,x 2 If 1 has a density of 0.9 and 2 has a density of 1.1 then p, is set
to 0.9 and p, must be 0.2 - try it in the app. This gives a simple, ideal density



behaviour which by definition means that there are no interactions between 1
and 2. More interesting is when there is a complex density behaviour:
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Figure 1-2 A non-linear density curve. By definition 1 and 2 must be interacting
significantly

Here there are significant interactions because the density is not varying linearly
from 0.9 to 1.1. If you just calculated the total molar volume M.  or the apparent
values MVoIApp you would not think that much was happening - after all, the
density curve isn’t all that exciting - which is why no one bothers to measure
anything so boring. Yet the real MVol, values are anything but boring. Look

at MVol, at low values of x.. It is a negative value - the molecule is taking up
negative volume! This sounds wrong. But look at the initial slope of the density
curve; as you add more high density 1 to 2 the density hardly increases. This
can only happen if 2 takes up less space than it otherwise would have done.

1.2.4 Pressure

Pressure, volume and density are inter-related. So it is no surprise that Gij
values come from routine pressure-related measurements, i.e. from osmotic
pressure [1, or by measuring the vapour pressure, each of which provides
activity coefficients. Because the calculations always rely on derivatives (for
MVol it is the change of MVol*** with x and for D it is the change of y with x)
single measurements are of no use. In the old days measurement of densities,
osmotic pressures or vapour pressures was a tedious process. With modern
equipment there is no excuse for not doing measurements across the entire
relevant mole fraction range.

Another possibility is to measure volume as a function of applied pressure

and mole fraction. But earlier we simplified things by saying that we could

ignore isothermal compressibility effects. This is another way of saying that to
measure KB integrals via direct pressure measurements we need very high
pressures that are not common in most labs. One exception to this is solubility in
supercritical CO2, where pressures of a 100+ bar are routine.



This section is for intellectual completeness. Very few of us will play with
pressure in our solubility experiments®. The day that someone comes up with
a simple high throughput pressure system where we can measure vapour
pressures and densities, then a whole new way of gathering KB data will open

up.
1.2.5 Atoy KB world

We can learn a surprising amount about KB simply by playing with a toy, 2D,
world. In the first image we set up the world with "molecules" of equal size and
mutual attraction, a truly ideal situation. After running the simulation for a while
we see the RDFs for g,., g,, and g,,, all of which are the same. The KBI are also
(within the noise) equal. We even find that the chemical potentials are equal.
[The chemical potentials are calculated via the magic of Widom insertion. It is
not discussed further as it takes us too far from our main goals.]
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App 1-3 https://www.stevenabbott.co.uk/practical-solubility/rdf-demo.php

Now re-run it with 2 liking itself (the means are unspecified) 50% more than 1
likes itself and 1 likes 2. Not surprisingly we find a much larger first peak for g,,
and G,, is larger than G,, with G_, being negative. The chemical potential p, is
significantly lower than y, as we should expect.

Here we controlled the outcome by specifying that 2 liked itself more. In the real
world we would measure the Gij values and be able to deduce that 2 liked itself

6 Unless you are interested in protein stabilisation in deep-water fish. The KB analysis by Shimizu and Smith of
the effects of trimethylamine N-oxide requires such a pressure-based analysis.


https://www.stevenabbott.co.uk/practical-solubility/rdf-demo.php

more than 1. We would then hope to be able to draw some molecular insights
from that fact. | have learned so much about KB just playing with such a simple
world. | hope you have a reasonably fast laptop so that you can explore many
scenarios without getting too bored.

So far, however, the app has not taught us much we didn't already intuit. The
next run of the app will, | hope, provide insights that are not so easy to intuit
and which are hugely important for all KB, especially work on proteins and other
polymers.

1.2.6 Excluded volume

“‘Excluded volume” is a potent
contributor to solubility effects that is
at the same time totally simple and (as
judged by the literature) massively
confusing. It is simple because all it is
saying is the obvious - if a molecule is
sitting somewhere then you cannot
have another molecule in the same
place. This trivially obvious fact gives
rise to the characteristic oscillations in
the radial distribution function, g, that
is integrated to give the KB integrals

ij

If one molecule is bigger than another
then there is more "nothing" before
the RDF can start properly. Because
the KBI starts integrating right from the start, the more "nothing" the smaller
the KBI. We can see this clearly in the same toy KB world as before. Here the
relative attractions are all the same. Instead the size of 2 is 1.8, so g,, starts
much later than g,, and g,, is in between. The G; values follow this trend.

This seems trivial, but the outcomes are far from trivial. If you find, one way

or another, that a Gij value is lower you can imagine all sorts of reasons for

this. But before you invoke, say, water clustering effects, check first whether
the explanation is merely that the excluded volume is larger. Decades of
speculation have been spent on protein/additive interactions, invoking the
magical properties of water when, as it turns out, many of the effects are merely
due to excluded volumes. This will be discussed in detail later.



1.2.7 Fluctuation theory

Please feel free to skip this section. | have to add it for completeness and as a
challenge to my own ability to understand an important point.

So far | have referred to the theory as Kirkwood-Buff’, and that is a term that is
frequently used. Equally often you hear it described as FTS, Fluctuation Theory
of Solutions®. Nothing | have written so far has required the idea of "fluctuations”,
and because | focus so much on KBIs, it makes sense to keep calling the theory
KB.

However, there is an equivalent way to describe the calculation of KBls. Instead
of integrating the RDF, it is possible to describe Gij in the following manner, using
two equivalent forms. The second form is often seen and is exactly equivalent,
but it makes less sense to me in terms of "fluctuations" so | will focus on the first
form:

G, —
Equ. 1-16 (NN,) @

The important bits are neither the V (volume) nor the final term with a Kronecker
delta on the top which means it is O if i#. This is fluctuation theory because

of the bits involving N and, especially, the <angle brackets> which mean
<averages>. Let us take things one at a time:

<N.> means the average number of particles in the volume being considered.
There is nothing difficult about that.

What is ON. with no angular brackets? It is defined as N-<N.> which means in
any given part of the solution, the difference between N. and the average. This
is, after all, statistical thermodynamics and we know that around any mean value
there is a statistical variation. We also know that some distributions (broad) have
plenty of samples with a large variation from the mean and others (sharp) have
very small variations from the mean. For KB we cannot use the word "variation"
because that has already been used in statistics as the square of the sum of
N-<N>; it is the familiar term for those who have to calculate, for example,
standard deviations in statistics. "Variation", because it is a square is always
positive. For KBls we need the ability to have positive and negative variations
from the average. The thermodynamicists have therefore decided to call N-<N>
the "fluctuation”. If they had asked my opinion as an outsider to their world |

7 1 know someone who listened to a lecture by Buff. The professor doing the introduction mentioned the "the so-
called Kirkwood-Buff theory". Buff corrected him. "No, it is the Kirkwood-Buff theory"

8 An excellent resource for exploring a wide range of KB ideas is the book Fluctuation Theory of Solutions,
Applications in Chemistry, Chemical Engineering, and Biophysics, edited by PE Smith, E Matteoli, JP O'Connell,
CRC Press 2013



would have said "Don't use it; to non-specialists, 'fluctuation’ implies a dynamical
process. For the specialists it is just a number with no implications of anything

actually 'fluctuating'." But it is too late now, we are stuck with the word as applied
to KB theory.

These fluctuations, as defined by N-<N.> are of no help to us - they don't have
any usable meaning on their own. But the numerator of the FTS definition of
Gij has angled brackets so we are not using the fluctuations themselves; rather
we are using the average of the product of two fluctuations ONON,. From this
definition we can work out two things about G;:

1. If the distributions of N. or N, are very tight, i.e. if there is very little variation
from the mean then the numerator is small and Gijis small. The opposite is
then true - if there are large variations in the N values (i.e. there are local
clusters with very different concentrations) then Gij is large.

2. These fluctuations can be positive or negative, so Gij can be positive or
negative.

That is why it is called Fluctuation Theory. If there are big variations,
"fluctuations”, in concentration throughout the solution, for example by one of
the molecules especially liking to be near (or away from) another one, then
these give us the large positive or negative Gij values which are signatures of
interesting solubility effects. This brings us back to how we approached KB
from the start. We look at the RDF around a given molecule and if there is a
strong local bias in either direction then we have a large value for Gij. Such a
strong local bias means that there is a strong "fluctuation" from the average
concentration. So even without those ON. terms we can say that we understand
fluctuation theory, even if we may not find the choice of word especially helpful.

Fluctuations (in the sense of there being regions of different concentration
within the solution) are not just inventions of the thermodynamicists. You can
see even low levels of fluctuation when you shine an X-ray or neutron beam
on the sample and measure the small-angle scattering. Normal dynamic light
scattering can see the fluctuations when they are somewhat larger. If they start
to approach the limit of fluctuation theory, i.e. just before a phase change, you
can even see the fluctuations with your eye, as a "sparkle" in the solution.

That should be the end of this formal digression except for one hint of why
fluctuation theory holds out promise beyond the approach | use throughout

the rest of this book. There are other fluctuations beyond the concentration-
concentration (sometimes called particle-particle) ones that have occupied us.
One can also talk about <dN,0e > and <dede>, where e stands for energy. As
soon as changes in temperature are added to the mix (up to now, everything
has been isothermal) we can consider areas of higher- or lower-than-average
energy. The concentration-energy and energy-energy fluctuation theories open
up some possibilities which, at the time of writing, | am only beginning to grasp.



1.2.8 Scattering

Those with access to small-angle X-ray or neutron scattering can detect
"fluctuations" in concentrations directly. One of the many delights of KB is that
you can calculate KBI directly from scattering data. This is an important point.
There are large amounts of scattering data out there and usually the results are
interpreted in whichever language happens to make sense to those doing the
study. This means that data from scattering experiments do not tend to build up
to a wider understanding. You cannot data-mine for understanding if everyone
interprets their scattering according to their own favourite (mis)understanding of
solution effects.

Because KB is a universal language with a direct and intuitive interpretation
that can be grasped by everyone, it is possible, at least in theory, to reinterpret
historical scattering data in KB terms and build up a wide, molecular-based
understanding which compares like with like.

Although the equations to convert between KB and scattering are not particularly
difficult, it is not something | have ever tried to do, so no app exists to help
encourage a mass conversion of scattering data to KB. If anyone with the
requisite knowledge of scattering and KB, but without app-creation skills, wants
to work with me on such an app, | would be delighted to try.

1.2.9 What have we achieved with all this effort spent on KB?

So far all we have done is to play with some artificial set-ups that allowed us

to build our intuitions about what happens at the molecular level when a solute
and solvent can interact more or less favourably. Rather than just look at activity
coefficients, which are about as deep as we generally go, we have seen that by
adding measurements of something as dull as density we can see the extent

to which the two molecules form statistical clusters or anti-clusters throughout
the full range of mixes. From the KB integrals we can get a feeling, at any
concentration, for the excess numbers of molecules (same or different) around
each molecule, a fundamental measure from which we can derive many insights
into what is going on within the solution.

We have also shown the rather elementary arithmetic going on behind the
scenes. The intention was to show how things we know to be important, activity
coefficients, are insufficient on their own and that dull things like density and
MVol have to be included to allow us to see deeper into what is going on. Future
chapters will skip most of the KB details. They are intellectually important but
add little to our ability to understand what is going on - provided that the key
formulae are made clear (they hold few surprises) and that calculations are done
for us via the apps which, of course, they will be.



It can also be admitted that these two-component systems aren’t wildly
interesting. If you are interested in things like azeotropes then the vapour liquid
equilibria and activity coefficients are all you need - the KB integrals do not add
massively to the story (though later on | use them to de-mystify some apparently
strange solubility phenomena in water). If you are interested in the solubility of a
solid in a solvent, the explanations via KB for why something is or is not a good
solvent is not in itself of great help. What we need is a method for predicting
which solvent is going to be best and it is already clear that KB is great for
retrospective understanding but not so good for predicting things.

So the next chapter jumps right in to the complexities of 3-component systems.
This is where KB is not just useful, it's transformational. That is why the next
chapter is called “Transforming solubility thinking”. Before going there, | must
issue a disclaimer...

1.3 Other solubility theories are available

In the coming chapters discussions will be restricted to the five principles
outlined in the introduction: Ideal solubility (and derivatives), HSP (with related
issues such as lattice theory and Flory-Huggins), COSMO-RS, DLVO and KB.
The following sections are for those who are interested in knowing about other
approaches and my reasons for not discussing them in greater depth.

1.3.1  Abraham parameters

Over many decades, Mike Abraham of UCL has done the hard theoretical

and practical work (a rare combination!) to produce a powerful, self-consistent
solubility theory based on a LFER, Linear Free Energy Relationship. There are 5
parameters that can be applied to any molecule:

1. E—Excess molar refraction

2. S—Dipolarity/Polarizability

3. A—Hydrogen bonding acidity

4. B—Hydrogen bonding basicity parameters
5. V—McGowan volume

When we come to discuss Hansen Solubility Parameters, we can see that

E corresponds roughly to 8D, S to 6P, A and B are lumped into 8H and the
essence of V is ever-present within HSP as the MVol. Abraham parameters can
also be linked to parameters that are part of the COSMO-RS infrastructure® and
which find a number of uses beyond COSMO-RS, for example in PSP discussed
below.

9 Andreas M. Zissimos, Michael H. Abraham,Andreas Klamt, Frank Eckert,and John Wood, A Comparison
between the Two General Sets of Linear Free Energy Descriptors of Abraham and Klamt, J. Chem. Inf. Comput.
Sci. 2002, 42, 1320-1331



With the Abraham approach, if you have a measurement of a property linked to
free-energy, such as the solubility of a solute in a solvent, then by a linear free
energy relationship you can calculate that solute's solubility in any other solvent.
This assumes that somehow you know the parameters of the solute in addition
to having access to a list of parameters for standard solvents.

The approach is logical and each time I've seen it applied to a specific problem,
it works well. Yet somehow it has not become a general-purpose tool.

1.3.2 MOSCED and PSP

There are two approaches which, like Abraham, use the sound principles

of separate parameters for H-bond donors/acceptors: MOSCED (Modified
Separation of Cohesive Energy Density) and PSP. MOSCED is briefly discussed
in the HSP chapter because at one time, thanks to the inherent superiority of
the donor/acceptor approach, it looked an attractive potential alternative to HSP.
However it failed to catch on.

PSP (Partial Solubility Parameters), from Costas Panayiotou at U Thessaloniki,
is an ingenious development of the solubility parameter approach that also
incorporates donor/acceptor ideas and has revised criteria for the equivalents
of the Dispersive and Polar components of HSP. By rooting itself in parameters
that can be generated directly from COSMO-RS (as mentioned in the context of
Abraham parameters) it avoids much of the subjectivity of HSP. It also cleverly
distinguishes between three types of solvents:

1. Homosolvated solvents have little or no H-bonding possibilities, e.g. hexane,
toluene

2. Heterosolvated solvents do not H-bond internally, but are capable of
H-bonding to other solvents, e.g. acetone, acetonitrile.

3. H-bonded solvents that can bond with themselves and heterosolvated
solvents, e.g. ethanol, ethylamine.

Unfortunately, at the time of writing PSP have not taken off. My personal
experience is that it is rather hard to pin down exactly which of the variants

of the PSP should be used within a number of different equations, and the
undoubted intellectual advantages of the system have not, in my hands, proven
to be substantially and consistently superior to HSP. If they finally catch on it will
be a welcome advance in the area of solubility parameters.

1.3.3 UNIFAC

UNIFAC (UNIQUAC Functional-group Activity Coefficients) has a large,
dedicated group of users who can rely on it to produce activity coefficients of
various mixtures of chemicals at various temperatures. It is, therefore, used
extensively in chemical engineering where things like vapour pressures are of



critical importance. It works by breaking each molecule down into its functional
groups then adding together all the interactions between those groups in

a rather complex manner using a large set of fitting parameters carefully
developed over the decades.

| have used UNIFAC on and off over the decades for specific projects, one

of which is an app to examine KB parameters. While | appreciate its many

strengths, it is certainly not a general-purpose solubility tool of the type that
interests me for the purposes of this book.

1.3.4 NRTL-SAC

The non-random two liquid model (NRTL) says explicitly that the behaviour

of molecule A around molecule B may well have some specific (non-random)
behaviour which will differ from the behaviour of molecule B around molecule

A. If one has some coefficients for the NRTL equations then solubility

behaviour becomes calculable. For those who are interested in the detailed
solubility behaviour of a specific system across a whole range of conditions

(e.g. for process engineering) NRTL allows the creation (from a small set of
measurements) of thermodynamically plausible fitting parameters that work very
well in practice. But this book is more about the prediction and understanding of
solubility from molecular structure, and NRTL on its own has little to offer. What it
needs is a way to generate fitting parameters from molecular structure.

The SAC (Segment Activity Coefficient) part attempts to do that by assigning
three molecular parameters to each molecule: X=Hydrophobicity; Y=Polarity;
Z=Hydrophilicity.

The approach certainly has its merits, but the necessary simplifications to create
the SAC part, on top of the limitations of NRTL itself mean that the approach
isn't wildly successful in the area where it has been targeted: pharma. Because
pharma can generally afford the resources, it makes sense to use a more
fundamental/powerful approach such as COSMO-RS.

1.3.5 The criteria for a successful solubility theory

The list of theories above is a tiny selection of the more successful ones taken
from a vast array of unsuccessful ones, which later | call a babel of languages
because they create so much confusion. It is worth taking a moment to consider
why a very few succeed and most fail. As a rough sanity check | looked for
recent (from 2016) Google Scholar citations of the methods I've described.

The (rounded) results were: COSMO-RS: 1400; HSP:1120; KB:600;
Abraham+LFER:200; NRTL-SAC:60; MOSCED:30; PSP:6.



Although NRTL:2200 and UNIFAC:1550 score highly, many of the papers, as
mentioned in the context of NRTL, are to do with providing a detailed activity
coefficient curve for a specific system. This is of huge importance in chemical
engineering but is not the concern of this book.

DLVO (Derjaguin, Landau, Verwey & Overbeek) is in a class of its own with over
3400 hits.

In terms of applicability of the theories, a check of Google Patents for filings
since 2014 show HSP: 550; COSMO-RS:200; DLVO:90; NRTL:80; UNIFAC:30
with no mentions of MOSCED or PSP. The HSPIP software is cited 140 times in
the same period.

| have created a table summarising my views on the main contenders. This is
subjective, but not illogical.

m Usability | Mean field? | Understanding

Many High Yes High Medium
COSMO-RS Few Medium Yes, but High High
DLVO Many Low n/a Medium Low
KB None High No High Low
Abraham Many Low Yes Medium Low
UNIFAC Many Medium Yes Low Low
NRTL Many Low ~ Low Low

The "Prediction" column needs some explaining. For a given solute, Abraham,
UNIFAC and NRTL can provide excellent predictions, but | have scored them

as "low". This is because, in general, you cannot take the excellent solubility
predictions from one system and apply them to another. There is little cumulative
build up of knowledge; each solute starts on its own terms. UNIFAC users will
still take exception. However, this book is intended for a broad range of solubility
issues and UNIFAC excels in large chemical engineering environments where
issues like vapour pressure curves are of far more importance.

The mean field column describes whether the theory assumes the absence of
long-range interactions. The "Yes, but" entry in COSMO-RS is there because
there are variants such as COSMOmic that can handle non-mean field
situations.

We can start our analysis of success and failure with solubility parameters.

The initial version (Hildebrand) used one parameter (dispersion) so this was
guaranteed to fail. A version from Blank and Prausnitz used two parameters; this



too was hopeless in the face of reality because alcohols could not be described
with the same polar parameter that worked for, say, acetonitrile. Hansen came
up with his three parameters, dispersion, polar, H-bonding plus an extensive list
of values that he and others could use, plus examples from the real world. This
created a lot of momentum, and the enthusiastic adoption by industry helped it
to become firmly established.

Those who preferred rigour to practicality worked on 4-parameter systems
(MOSCED and PSP) and even 5-parameter systems (Karger's chromatography
system). The more rigorous systems struggled to create large datasets and link
them to the real world, especially a world where solvent blends are the norm. So
a system, Hansen, that is intellectually inferior has (so far) won because it is far
superior in terms of practical use. My observation is that the predictions of the
more complex systems are not so much better than those of HSP to justify their
complexity. | assume this is because the errors from the assumptions behind
the solubility parameter approach are larger than the refinements from the more
complex approaches, so the extra work generates surprisingly little extra benefit.
A specific exception where donor/acceptor is obligatory is described in the HSP
chapter.

We can imagine that things could have turned out differently. For example,
Hoy, working for Union Carbide, created his own version of the three solubility
parameter system and Hansen (who knew Hoy) himself acknowledges that it
was excellent and gained a lot of traction because of the importance of Union
Carbide to the US chemicals industry. And yet this advantage turned out to be
a disadvantage. | have been told my someone familiar with the situation that
Hoy's approach gave Union Carbide a competitive advantage so he was not
encouraged to publicise it or to help it to develop outside. So what may have
been a superior system (we shall probably never know) did not, in the end,
supplant Hansen's.

Moving on from solubility parameters, those who need greater accuracy for pure
systems seemed to have found that the fitted systems such as Abraham, NRTL
or even UNIFAC do not give the accuracy that the more powerful COSMO-

RS can give without any (user-required) fitting. So the higher cost and steeper
learning curve for COSMO-RS are less relevant to the power users who can
benefit from the broad range of thermodynamic predictions that it can provide.

So, in practice, we have ended up with two widely-used systems: HSP, a sort of
general-purpose off-road vehicle for the rough realities of practical formulations,
and COSMO-RS, a sort of S-Class Mercedes ideal for the solubility autobahn.

In addition we need the ideas of ideal solubility to convert crystalline solids into
pseudo-liquids to which solubility theories can be applied. We will find that a
trivial ideal solubility theory (from Yalkowsky) is often more than good enough



in the face of uncertainties surrounding more profound theories, again showing
that "good enough and usable" is better than "superior but unusable".

Then we need DLVO for dispersions. It is a theory universally known to be
deeply flawed, yet | have not found any usable alternative. DLVO has more
than enough parameters for the formulator to grasp. More complex approaches
require even more parameters and most of us have no hope of finding or using
them.

And, finally, we need KB because none of the standard solubility theories can
cope with the complexities of local ordering/clustering which is so important for
issues of solubilization rather than solubility. Of all the theories used in the book,
KB has the oddest set of characteristics. First, it is assumption free. Second,

KB parameters can usually be determined via very simple experiments, a
surprising and transformational aspect of such a profound theory. Third, KB can
unambiguously resolve debates that have raged for decades. Fourth, it provides
(so far) no predictive power. This fourth aspect is very frustrating, but three out
of four isn't too bad.

After that long digression, let us return to the claim that KB can transform
solubility thinking.



2 Transforming solubility thinking

The world of solubility science is fragmented into little domains, each of

which has its own language and priorities. This fragmentation creates lots of
misunderstandings and also wastes a lot of effort in fruitless debates. My reason
for writing this book and basing it on KB theory is that there is a glorious unity

of solubility science which is most readily analysed and explained using modest
variations on the basic KB science we went through in the previous chapter. So
KB can transform solubility thinking, solubility language, and our approach to
doing measurements in the area of solubility.

This is a grand claim. The first step in justifying it is that KB theory itself is
fundamental and assumption-free. It is not some set of clever tricks that happen
to do a good job. It is how solubility works.

Against that is the fact that up to recently it has been wildly under-utilised
because it is dry thermodynamics full of dull arithmetic and not at all suited for
the real world of busy formulators. It was also totally useless until Ben-Naim
solved the “inversion” problem that allowed KB integrals to be calculated from
experimental data using the methods of the previous chapter. Above all it has
been useless because it lacks predictive power as the problem of predicting KB
integrals from first principles, e.g. molecular dynamics, has proven intractable.

The reason it is transformational now is that pioneers such as Ben-Naim,
Matteoli, Smith, O'Connell, Marcus and Shimizu'® have shown that KB can
resolve with simplicity and clarity many debates that have dogged solubility
science for decades. The debates tend to involve water as the solvent, and

try to resolve how significant (or not) water structure is to any given solubility
issue. Many debates also involve the idea that clustering (in some analogy to
surfactant micelles) is helpful for solubilizing many systems. Those readers who
have been paying attention may immediately realise why this is mostly wrong!

Rather than discuss abstract reasons why KB is transformational, we will plunge
in to a specific area that has caused confusion for many decades: the world of
“hydrotropes”.

21 Hydrotropes - or are they Solubilizers?

The word “hydrotrope” means many different things to many different people:
solubilizer; microemulsion former; solvent; solvosurfactant; nice, friendly, mild
surfactant; etc.

10 Each of these is an author in Fluctuation Theory of Solutions, Applications in Chemistry, Chemical
Engineering, and Biophysics, edited by PE Smith, E Matteoli, JP O'Connell, CRC Press 2013. | am grateful for
the help from Dr Matteoli in sorting out the KB binary and ternary apps which required techniques far beyond my
KB understanding.



In this book | want to use the neutral word “solubilizer” to describe a molecule
added in modest quantities that will enable a solvent to dissolve more of a
solute. This molecule will generally not be regarded as a solvent in its own right
(urea, for example, is a solid), or is added in quantities far less than might be
expected if it were acting as a second solvent. This definition leaves many fuzzy
edges, but it is far better to use a word “solubilizer” that is relatively obvious and
neutral in its meaning than to use a word like “hydrotrope” which has so many
meanings and creates more confusion than clarity. Nevertheless, | am forced

to use the word hydrotrope because we have terms like "Minimum Hydrotrope
Concentration”.

We can quickly state the central dogma that has misled hydrotrope researchers
for decades, and which KB refutes with simple clarity:

“Many solubilizers are surfactants such as Tweens which form micelles that
dissolve the solute. Surfactants have a minimum Critical Micelle Concentration
(CMC) below which they have no solubilization effect. Many simple hydrotropes
such as urea or nicotinamide have comparable solubilization effects (2-10x
increase in solubility) and also show a Minimum Hydrotrope Concentration
below which they have no effect. ‘Therefore’ these hydrotropes work via
‘surfactant like’ clusters.”

Although this dogma has been stated in terms of simple hydrotropes like urea ,
nicotinamide or sodium cumene sulfate, it is regularly used in many other cases
with molecules that could be plausibly thought of as surfactant-like and have
been sometimes called solvosurfactants.

There has been much earnest work to bolster this logic; all of it fruitless.

In the face of the fact, known to many yet ignored by many others, that urea is
totally unable to form clusters in water (its solubility behaviour in water is nearly
"ideal"), there is another popular hydrotrope dogma.

“Water is uniquely problematical because it likes to self-cluster. If those clusters
can be broken up by a hydrotrope then the water can better dissolve the solute.”
No one doubts that water forms clusters. The “explanations” of how urea or
nicotinamide make it de-cluster and increase solubility have always been hard
to grasp - and we now know why; because they are wrong. In a later chapter

we will mention "chaotropes" and "kosmotropes", terms often used to describe
how molecules (urea versus trehalose) or ions (Li* versus Cs*) change the
solubility characteristics of, say, proteins. These names imply cause and effect
via creating chaos or order in the water structure, yet it turns out that they have
contributed little to the real understanding of the effects of the molecules or ions.
Let me change that previous sentence to "and have done positive harm to the
real understanding of the effects of the molecules or ions". Words like chao/



kosmotrope frame the debate before the debate has even begun. If everyone
agrees that you are adding a chaotrope, then the ensuing solubility change must
be due to the chaos. These terms subconsciously block off alternative ways to
think through the issues. We will find that the effects of chaotropes are highly
varied and have nothing to do with chaos, but the use of that term can stop us
looking for the true explanations. Language matters in solubility.

There is a third popular hypothesis which is backed up by almost no evidence
yet has an intuitive appeal.

“Hydrotropes work by forming complexes with the solute”.

As we shall see, although this hypothesis is totally wrong, there is a deceptive
grain of truth held within it.

The KB work of Shimizu and colleagues (of whom I’'m one)'" shows, with total
clarity, how these classic hydrotropes work and the result is a bit of a surprise.

In the basic chapter on KB theory we had molecules 1 and 2. Now we will
stick strictly to the convention that 1 is the solvent (in this case, water), 2 is the
hydrotrope/solubilizer and u is the solUte. As you can see, it is rather hard to find

a numbering system that is clear and helpful as all three start with “sol” - so “u
is used for the solute as it is the first letter that distinguishes it from the others.

We know that the aim is to find the key KB integrals: G, G,,, G, ,G,,G,, G,
remembering that, say, G_, is the same as G,,. We also know that we can get
all Gij values for 1 and 2 from density and activity (vapour pressure or osmotic
pressure) data. Extracting the G values requires chemical potential data,
which comes from the derivative of the curve of the dependence of solubility on
solubilizer, plus an admitted approximation - that at these low concentrations
MVol is not much different from its nominal value. Finally, we ignore G
because at the low concentrations of solute it plays no part in the solubilisation
equations. As this is KB theory, working all this out is a lot of tedious arithmetic.
The paper describes it in detail. In addition, a tutorial review'? which deliberately
only includes one equation, is tied to the apps discussed previously plus

the hydrotrope app (below) where we do all the hard work for you. Note that
although we have added an approximation in order to calculate G values (and
omit G ), this isn’t because KB cannot handle the assumption-free case. It’s just
that to get the exact values we have extra unknowns for which we would need
extra experimental data. Our pragmatic judgement is that not only is the extra

11 Jonathan J. Booth, Muhiadin Omar, Steven Abbott and Seishi Shimizu, Hydrotrope accumulation around the
drug: the driving force for solubilization and minimum hydrotrope concentration for nicotinamide and urea, Phys.
Chem.Chem.Phys., 2015, 17, 8028

12 Steven Abbott,Jonathan J. Booth and Seishi Shimizu, Practical molecular thermodynamics for greener
solution chemistry, Green Chem., 2017, 19, 68-75
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effort not justified but if it were required, no one would do it anyway as life is far
too short and the gain in understanding is going to be trivial.

To anticipate the answer to the core questions about hydrotropes, here is a
slogan that works rather well for nearly all solubilizers (including “entrainers” for
scCO2): “G , is good, G,, is bad, G, is irrelevant”. The main exception to this
rule is the conventional surfactant solubilizer which requires the formation of
micelles. How this fits into the broader KB theory, along with solvosurfactants
and "pre-ouzo" effects is discussed in the Solubilization chapter. When we
come to the aqueous solubility chapter dealing with other effects such as the
Hofmeister series, the slogan is even simpler: "If you want to understand u-2
effects, focus on G_,". One reason for writing this book is that until recently the
two slogans were largely unknown and had they been known they would not
have been believed. Another reason is that the u-2 slogan sounds so obvious
that it hardly seems worth stating it. In the world of aqueous solubility this has
not been at all obvious, with vast efforts focussed on anything other than u-2.

2.2 G, is good, G,, is bad, G, is irrelevant

With patient measurement of the densities of solutions of the solubilizer, e.g.
urea or nicotinamide, in water, along with vapour pressure osmometry data (as
"osmolality") measured or found in the literature, G,,, G,, and G, data could be
extracted via the techniques of the previous chapter. The first time we tried this,
the density measurements took a few hours because a modern densitometer
was available. The osmometry data took considerably longer as the equipment
was old fashioned, more or less found in an old cupboard. KB understanding
will be seriously hampered until those interested in solubility gain the (modest)
funding for good densitometers and osmometers and can integrate them into an
HT mindset aided by simple robotics.

The results showed that G, hardly changed with the concentration of urea

or nicotinamide. This means that water structure is not changing, so that
hypothesis is immediately eliminated. For urea, G, is insignificant (as we said,
urea does not self-cluster in water) whereas for nicotinamide it is moderate.
Because each can be a good solubilizer, the idea that solubilizers depend on
“clustering” via the analogy with surfactants is immediately eliminated.

This leaves us with G, and G ,. These were derived (again using similar
techniques) from an extensive, high quality set of data on solubility versus
solubilizer concentration gathered by the team of Prof Gandhi in Chennai. The
solutes were relatively simple “drug like” molecules such as methyl benzoate,
p-aminobenzoic acid, butyl stearate and ethyl benzene. The Gandhi team
investigated several other solubilizers including sodium benzoate and sodium
salicylate. With some difficulty we were able to obtain sufficient data to be able
to extract Gij data from those solubilizers too. It is striking that the best solubilizer
for one solute was not the best for another. So whatever the solubilizer is doing,



there must be specific solubilizer-solute interactions, and the extent of these can
be found directly via the KB integrals. The discussion below includes only urea
and nicotinamide because they represent rather different types of molecules
with very different self-clustering characteristics and very different potentials to
interact with other molecules. Readers can go to the app and look at the results
for the other solubilizers.

For both urea and nicotinamide with a range of solutes, G, is insignificant (after
all, the solute doesn’t like water, which is the problem we are trying to solve with
solubilizers) which leaves us with G , which is significant in all the examples so
far studied.

There is one equation that governs the solubilization (and is the only equation in
the tutorial review mentioned above):

%_ RT Gu2 _Gul

Equ. 2-1 oc, 1+¢,(G,-G,)

This is slightly more complex than the equivalent equation for two component
systems, but does not introduce any fresh ideas. From our familiarity with the
meaning of the KB integrals we can intuit what each of the terms might mean.
And the idea of a derivative of the chemical potential holds no special fear - it is
just the change of solubility with solubilizer concentration. So we can work out
how solubilizers might work and from the data can see how they do work.

The left hand side is telling us, effectively, how the solubility of the solute

u depends on the concentration of the solubilizer 2, with a large negative

value being desirable to reduce the chemical potential. With the (justifiable)
assumptions that G , and G,, are both unexciting, the right hand gives us the
answer: high solubility requires a large G ,, i.e. a strong interaction between the
solute and the solubilizer, and a small G,,, i.e. a weak self-association of the
solubilizer, in direct contradiction to one of the favoured hydrotropy hypotheses.

The app shows everything that is going on. There is the solubility data itself,
with the characteristic curve of no effect on solubility till the MHC is reached,
then solubility rising to a plateau. There are the raw data on density and
osmolality and the fitting functions from which the relevant KBI are extracted.
[As discussed earlier, KB calculations depend on derivatives of values, not the
values themselves. The data are fitted to polynomials so that the derivatives can
be calculated at any desired concentration]. Then there are the curves of the
KBI, with G , dominant and G,, rather small except (not shown in this image)

for nicotinamide which self-associates and, therefore, is less effective than it
otherwise would have been.
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| remember clearly my excitement when | first understood the equation
explaining hydrotropy because it was followed almost immediately by confusion.
The G, curve shows a large maximum, which is associated with the increase
in solubility but then it reverts to 0 at high solubilizer concentrations. Doesn't a
G, of 0 imply low solubility? Yet although the solubility has plateaued, it hasn't
become lower. This is where it is important to remember that Gij values are
integrals with respect to the average bulk solution. Suppose the solute needs,
on average, 1 solubilizer next to it in order to feel happy in the water. When the
levels of solubilizer are low there is no chance of attaining that average unless
there is a high G ,. But at high concentrations of solubilizer just the average
number of solubilizer molecules in the neighbourhood is enough to keep the
solute happy, so there is no need for a high G, value to keep the solute in
solution.

The loose way of describing the situation is a necessary way for building an
intuition about another explanation sometimes offered for solubilizer effects. |
chose 1 solubilizer deliberately in the previous paragraph because the false idea
that “1+1=a complex” is seized upon by those who favour the “solubilizers as
complexing agents” explanation - despite the fact that unambiguous evidence for
complexes had been hard to find. Thermodynamically there is a big difference
between the KB behaviour of a complex and the general shape of the KB curves
found for all the solubilizer cases studied so far.

It is important to remember that KB curves are statistical constructs. With
plausible assumptions we can calculate excess numbers, N , of solubilizer
around the solute. These numbers are non-integers and vary smoothly from 0 to
a maximum and back to 0. The maximum may be 0.789 or 1.234 or 2.345. This
is nothing to do with “complexes”. And remember the warning in the discussion
of excess numbers; it is far from clear what the “ideal” case should be that
defines the excess. The general shapes and magnitudes of excess numbers
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are highly insightful but must be never taken too seriously, as the same KB data
in different hands might yield equally plausible, but different, excess numbers.
Whatever the exact numbers and shapes, it is clear that even if there is a
headline number of 1 excess molecule this is very different from a 1:1 complex,
and 2 excess molecules are definitely not a 1:2 complex. It is hard to imagine
how such a complex could be produced via the generally dull solubilizers and
uninteresting solutes used in the experiments.

So with the solubility data and some density and osmometry data a debate that
has raged for decades has been definitively settled in favour of an explanation
that was hardly ever raised. As we shall see, the same approach immediately
settles a debate in a very different area.

But there is one thing missing from the explanation. Why is there a Minimum
Hydrotrope Concentration? The failed explanation (hydrotrope clustering) that
created an analogy to CMC was attractive because it offered an apparent
explanation for the MHC, even though there was never any good evidence
for why the MHC was at concentrations of ~1M rather than the yM or mM
concentrations of surfactants.

The real explanation required some virtuoso KB theory from Shimizu and
Matubayasi'® that is too complex to describe here. Although the theory is
complex, the explanation is via another KB integral that poses no extra difficulty,
though admittedly it takes some getting used to.

The MHC kicks in when G_,, becomes large. What does this mean? We know
that G, is the self-assouahon of the solubilizer and we also know that this is

a bad thlng in terms of solubilization. We know that G, is association of the
solubilizer with the solute which is the driving force of the solubilization. But

G_, cannot give a MHC. G_,, is the self-association of the solubilizer induced
by the solute. This type of self—assomahon has, to the best of my knowledge,
never been suspected before, which is why MHC had always been a mystery.
It cannot kick in until there is enough solubilizer available to self-associate, but
once there is enough, the self-association around the solute creates a significant
driving force for further solubilization. It is fascinating that self-association is
bad (because it effectively removes solubilizer from the solution) yet when the
solute itself induces self-association of the solubilizer, good things happen.
Remember, too, that this effect works for urea, so there is solute-induced urea-
urea clustering even though urea does not self-cluster.

13 S. Shimizu and N. Matubayasi, Hydrotropy: Monomer—-Micelle Equilibrium and Minimum Hydrotrope
Concentration, J. Phys. Chem. B, 2014, 118, 10515-10524



For those interested in exploring the MHC, a complementary theory which is less
exact but is much easier to grasp has been created™ by the same authors as the
full MHC theory and the calculations (3 parameters to generate the fitting curve
to the solubility data) are included in the app.

With a complete explanation of classic small-molecule hydrotropy is that the end
of the matter? No! Like everything else involving KB the explanation is purely
retrospective - we can analyse why, say, urea is better than, say, nicotinamide
for solubilizing methyl benzoate because although nicotinamide has a higher G,
than urea it also has a bigger self-association, G,, which, on balance, reduces
the solubilization. What we cannot do is predict in advance which would be the
better solubilizer. To do this we would need to be able to calculate G , and G,,
from first principles using, say, molecular dynamics. But the subtle balance of
many effects within such calculations do not currently make them a reliable way
to form predictions.

Part of the problem is that with no consistent science for investigating the
various solubilizer effects, there has not been, until recently, a set of test cases
or datasets for those armed with sophisticated predictive tools to validate or
optimise their systems.

A good example is that there has been a lot of SAXS/SANS work on systems
that may or may not be good solubilizers. The data can be, and has been,

used to calculate KB integrals. But those, for example, who assumed that self-
association was a necessary attribute for hydrotropy would have been focussing
on the wrong measurements. Strangely, getting funding for such sophisticated
experiments is probably easier than getting funding for very dull density or
osmometry measurements, though these latter techniques provide a lot of
insights for very little work if the equipment is modern.

One reason for writing this book is to encourage a change in the attitudes to
research on solubilizers. With some good sets of high-quality data and the
clarity of the challenge of being able to predict the balance of KB integrals,
theoreticians will be able to rise to the predictive challenge. Happily, a 2017
paper'® has shown that this sort of approach is possible. For a single solute,
indomethacin, a large number of hydrotropes were used. The data were fed into
an artificial neural network and a good predictability with respect to the training
set was obtained. By combining the artificial neural network with some human
intelligence, it was possible to identify a new (i.e. not in the training set) potential
hydrotrope with predicted high efficacy. When tested, the new molecule proved
to be highly successful.

14 Seishi Shimizu and Nobuyuki Matubayasi, The origin of cooperative solubilization by hydrotropes, Phys.
Chem.Chem.Phys., 2016, 18, 25621

15 Safa A. Damiati, Luigi G. Martini, Norman W. Smith, Jayne M. Lawrence, David J. Barlow, Application of
machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin, International Journal of
Pharmaceutics 530 (2017) 99-106
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Hopes for a widespread adoption of this KB-driven approach would be worthless
if it helped only with small-molecule solubilizers and if the goal was simply an
academic understanding of a fascinating problem. In the Solubilizers chapter the
wider need for more KB understanding within industry is explored. At this stage
of the book it is important to justify the "transforming solubility" title by looking at
a seemingly different solubility challenge that has defied explanation before KB
was used. The example is very much real-world, with major economic impacts in
terms of green (or not) extraction of natural products.

2.3 scCO2 entrainment

There is an obvious attraction for using CO2 as a solvent - at the end of the
process the CO2 can simply evaporate away, leaving the solute behind. The
classic use for this is the decaffeination of coffee, with CO2 replacing solvents
such as dichloromethane.

In two ways, however, CO2 is a poor solvent. First, the molecule shows few
features that make it want to interact with most solutes of interest - certainly not
caffeine. Second, ignoring frigid liquid CO2 it only becomes dense enough to
show significant solubility properties when it is brought to something like 30°C
and 120bar pressure when it becomes a supercritical fluid, scCO2. Although
much is made of the supercritical state, in solubility terms it really isn’t very
interesting. Yes, viscosities are low so the kinetics of dissolution can be faster
than with conventional solvents. But apart from that, to the solute it is a relatively
low density fluid, which means that the in addition to CO2 being chemically
uninteresting, the density of molecular interactions is low, making it an even
worse solvent. It is commonly said to act like iso-pentane, not a solvent that
most of us would choose to use for most solutes.

So the number of systems for which scCO2 is a good, practical solvent is rather
small. The inconvenience of using a high-pressure system then makes it even
less attractive to use scCO2. And despite the claims of it being a “green” solvent,
the energy cost of creating the supercritical fluid and the engineering cost of a
high-pressure system greatly dilute its claims to help save the planet.

That would be the end of the story if it were not for “entrainers”. It turns out that
if you add a few % ethanol, acetone, ethyl acetate etc. to an scCO2 system you
can get some reasonable solubilities. So caffeine is barely soluble in scCO2 but
adequately soluble in the presence of a few % ethanol (and also in the presence
of water, but water is very insoluble in scCO2 so its use as an entrainer is
limited). The literature is full of examples of the use of small % of ethanol or
acetone to get most of the advantages of scCO2 without the drawback of
minimal solubility. The question then arises as to how the few % of entrainers
can yield a significant increase in solubility, and how to find the optimum
entrainer.



The literature is very confused about this, partly because the scCO2 system
itself is complex with its strong dependence on temperature and pressure. To
fully understand what is going on you don’t just have to measure solubilities but
also the density of the system. For conventional solvents, there is no tradition
of worrying about densities as they don’t change all that much. As mentioned in
the previous section, this is unfortunate because measuring densities provides
lots of KB insights. For scCO2 it has always been clear that the solute and the
entrainers on their own have a large effect on the density of the system (after
all you are adding a solid and a liquid to a weird supercritical state), so it has
been seen as necessary to measure the densities of the scCO2 system. And to
gain understanding, it has been traditional to measure solubilities at a range of
temperatures and pressures.

The problem is that these datasets have then been analysed via whatever ad hoc
approach appealed to the researchers. This would usually involve some EoS,
Equation of State, it might involve some NRTL (Non-Random, Two Liquid) activity
coefficient estimates, and then some fitting to some plausible equation. The

net result has been a large number of papers that have failed to build a broad
understanding of what is going on. How can you compare some fitting of one
EoS or some ad hoc formula to a different EoS or to another ad hoc formula? You
cannot.

Once more, KB is able to unify a complex problem with elegant simplicity. A
paper by Shimizu and Abbott’® analysed the entrainer effect on 16 systems. The
outcome is the same as the hydrotrope story. With 1 being the solvent, scCO2,

2 being the entrainer and u being the solUte it was possible to look at how
entrainer and/or solute affected the CO2 self-association (G,,), which is hardly at
all. It was also possible to measure the amount of entrainer self-association (G,,)
and see its effect on solubility of the solvent, which was small and negative.

Not surprisingly, the large effect, in all 16 systems, arose from G ,, i.e. from
entrainer solute interactions. It is equally no surprise that the entrainer effects
were stronger at lower pressures when the CO2 was least dense and therefore
a poorer solvent.

These conclusions were robust even when it was not possible (through lack

of experimental data in the original literature) to calculate all the required
parameters. For example, MVol and MVol, are not equal to their “normal” values
and depend strongly on pressure and temperature. In some cases their values
are negative, meaning that they take up less space than if they weren’t there,

i.e. they help to compact the overall system.

16 Seishi Shimizu and Steven Abbott, How Entrainers Enhance Solubility in Supercritical Carbon Dioxide, J.
Phys. Chem. B 2016, 120, 3713-3723
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To make it possible to write a convincing academic paper even though there
were so many uncertainties due to lack of data, the paper was linked to the
scCO2 app, along with an invitation to inspect, criticise and improve the open
source code or the theory. For those who simply want to check the robustness
of the conclusions, values for uncertain parameters such as the MVols can be
changed with a slider and the impact of the changes on the overall conclusion
can be inspected. Happily, no reasonable change to any of these values makes
a significant change to the overall conclusion that the solubility of the solute is
enhanced via specific entrainer-solute interactions (G ,) and reduced by any
tendency of the entrainer to cluster (G,,).

Just as with the hydrotrope/solubilizer story, the definitive conclusions from the
KB analysis are just a beginning. By having a universal, assumption-free method
for looking at the complex interactions within the scCO2 system it is possible to
build a clear picture of what is happening with solutes, entrainers, temperature
and pressure. We can compare datasets objectively, unlike all those papers

that perform analyses via ad hoc EoS approaches. But KB does not allow us to
predict what will be the effect of any specific entrainer on any specific solute. For
this we need other solubility tools, coupled to a large database of entrainer data
so we can compare predictions to reality.
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As a contribution to this process, Abbott and Shimizu'” extracted a large number
of so-called k_ parameters from the confusion of measures of the effectiveness
of entrainers within different papers, many of which do not supply enough
information to perform a proper KB analysis. The simple formula used says that
the solubility S in the presence of entrainer is given by S=S (1+k_y,) where

S, is the entrainer-less solubility and y, is the mole fraction (typically 1-3%) of
the entrainer. These k_ values are comparable unlike the frequently reported
"enhancement factor", f, which is the ratio of solubility with and without entrainer.
Values of f cannot be meaningfully compared directly because a larger f might
come from a larger % entrainer rather than a stronger intrinsic entrainment
capability. A large k_ means that the effect of the entrainer is large. For those
who are familiar with the topic, the equation is a linearised Sovova formula
where the linearisation loses some accuracy but gains comparability. Although
these k_, values are approximate, they are comparable across solutes and
entrainers and allow the big picture to be seen. They are also directly linkable

to G, values, giving them some fundamental value. Sadly, the message is

that most entrainers for most solutes are not especially useful and only solute-
entrainer pairs with strong H-bonding potential give significant solubilization
effects. As you can explore for yourself in the app (by looking at the
enhancement factor, "f*, column) naproxen, for example, gains a ~10x increase
in solubility with ethanol (which can be a donor/acceptor with the naproxen acid
and ether groups) and ~5x increase with acetone which can only be an acceptor
to the acid group. With benzoic acid, the enhancement factors for ethanol,
acetone and hexane are 4, 2 and1.5. For solutes such as 1,8-cineole with just
one ether group, the enhancement factors (not included in the app) for ethanol,
acetone and hexane are each ~1, i.e. they have no effect.

Note that almost no one' in the scCO2 literature had ever asked what the
relative 1-1, 2-2, u-2 (etc) attractions were, so all sorts of well-meaning but
data-less explanations for, and equations for, entrainers have appeared in the
literature. As soon as it is clear that u-2 is the only thing that really matters, the
question of what would promote large u-2 values can be posed and the rather
obvious answer "H-bond interactions" can be explored. To do the exploration,
the 100+ datasets on scCO2 entrainers had to be re-analysed in terms of a
common, simple formula (the k_ formula) that lost some precision and gained a
lot of clarity. Just a glance at the data shows that the H-bond hypothesis has a
lot going for it. One can then attempt to falsify the hypothesis by looking for data
on other potential H-bonding entrainers such as acetic acid and ethyl lactate.
They did not refute the hypothesis, and the strong effect in a single example of
ethyl lactate as an entrainer raises the question of why this green(ish) entrainer
is not used more often. Water is a problem because it can only be added at

17 Steven Abbott and Seishi Shimizu, Understanding entrainer effects in scCO2, in Thomas M Attard and
Andrew J Hunt (Editors), Supercritical and Other High-Pressure Solvent Systems; Green Chemistry Series,
Royal Society of Chemistry, 2018.

18 The use of FT-IR to identify solute-entrainer interactions is discussed in the book chapter



relatively low concentrations. Even so, the evidence is borderline (i.e. water

is a poorer entrainer than expected), certainly not strongly supportive. But we
know that G,, for water is likely to be large (water is, after all, not very soluble

in scCO2) so some careful experiments to measure G,, and see if it is high
enough to explain the relatively low efficacy of water would be a good test of the
hypothesis.

| hope that the preceding paragraph sounds totally obvious. Yet decades of
scCO2 experimentation had failed to come up with any falsifiable hypotheses
(though the H-bonding idea was frequently mentioned). The scCO2 world
were persistently asking the wrong questions and were persistently satisfied
by ad hoc calculations against whatever model most appealed to the specific
researchers. That is not good science and is especially bad in an area which is
supposed to be green. Research resources are precious (and polluting) so they
should be used with care, which means using the right language, asking the
right questions and finding falsifiable hypotheses. In the book chapter we claim
that a few months of focussed work on a small number of carefully-selected
solutes with a small number of carefully-selected entrainers, using smart, high
throughput techniques would basically resolve the scCO2 situation once and
for all. That is a few months of work compared to decades that have achieved
remarkably little. That is what | mean about transforming solubility thinking.

Before discussing HSP, COSMO-RS and DLVO, let us explore some other ways
that KB is revolutionising solubility thinking.

2.4 KB and proteins

It has long been known that the addition of small molecules such as urea or
guanine, or larger molecules such as sugars or polyethylene oxide (PEO),

to a protein solution can change the protein’s conformation, stability, self-
association, gelation and so forth. Because this is taking place in water, the old
favourite, water structure, has been invoked many times and provided no lasting
understanding of what this actually means. An alternative explanation has
invoked binding of the salts or sugars to the protein, again with little insight into
what is actually happening.

The KB approach’ once again introduces clarity to a confused situation.

The specific details of the paper are discussed in the Hofmeister section of

the Aqueous Solubility chapter. Briefly, using 1 for water, 2 for the modifying
molecule and u for protein we have the usual choice of effects based on G,
G,,, G,,, and G_,. As in all other cases, the water structure G, is irrelevant.
Usually G, is also small or irrelevant. In most cases, it is G, that controls the
effect - in other words the effect of the additive is due (for better or worse) to the

19 Seishi Shimizua, William M. McLaren and Nobuyuki Matubayasi, The Hofmeister series and protein-salt
interactions, J. Chem. Physics, 124, 234905 (1-4) 2006



interactions between the additive and the protein, rather than via anything to do
with water.

The temptation, then, is to look for interesting reasons for these interactions,

and in the case of the Hofmeister ions this is entirely justified. But often it is

a supremely uninteresting interaction that causes the effects, the excluded
volume. We have already met the trivial concept behind it - where one molecule
is, no other can be in the same place. This means that the RDF gets off to a

bad start, with a zero value over a large radius r and that in turn means that the
integral that creates Gij is off to a negative start because the integral is RDF-

1, where 1 is the long-term average. Two large molecules will have a large
excluded volume so even if their general interactions are neutral, Gij might be
negative. And that is what happens when a molecule of, say, sucrose is added to
a protein solution. It might be entirely neutral in its interactions, but the excluded
volume effect means that G , ends up being negative, resulting in a stabilisation
of the protein conformation (pushing it towards a folded state) or the creation

of gelling (pushing too hard). When it comes to proteins it is always tempting to
come up with exciting explanations for various effects, but unless the protein and
an additive like a sugar have some specific reasons for interacting strongly, the
sugar affects the system purely through excluded volume.

Against this background, any sugar which happens to solubilize a protein
solution (tendency towards unfolding or reducing gelation) and which happens
to be the same general shape/size as a sugar which encourages folding must
have some specific positive interaction. For those who are interested both in

the dull general effect and the occasional specific effect (sugars with equatorial
-OH groups), there is an excellent KB analysis of the effect of sugars on the food
thickening agent carrageenan by Shimizu and co-workers?°.

2.5 The problem with the RDF

There is a problem with the RDF which is especially acute with irregularly-
shaped proteins: what do we mean by distance between two molecules? It is
especially hard to derive a meaningful interpretation if the distance is defined
as being between the centre of the (large, complex) solute (such as a protein)
and a medium-sized molecule (such as a sugar). | must stress that this is

not a problem for KB itself, which is assumption-free. It is a problem for how
we interpret KBI and for how we derive meaning from molecular dynamics
simulations.

20 Richard Stenner, Nobuyuki Matubayasi, Seishi Shimizu, Gelation of carrageenan: Effects of sugars and
polyols, Food Hydrocolloids 54 (2016) 284-292



A paper by Martinez and Shimizu?' uses the examples of urea and TMAO
(trimethylamine N-oxide, discussed in detail later) interacting with Ribonuclease
T1 as computed via molecular dynamics. From the simulation the RDF can be
calculated as normal, and the results provide no obvious insights into why urea
prefers to be with the protein and the TMAO is excluded, facts that are obtained
from the experimental data by the normal means. Using a new "minimum
distance" RDF, not only does the integration for the KBl become much easier (it
converges quickly) but the RDF makes intuitive sense.

v The trick is to define the RDF on the basis of the
minimum distance between an atom on the protein
and an atom on the relevant solvent (in this image
water) or added molecule (urea or TMNO). The
irregular blue shape is the protein and a selection of
water molecules close to it each have an obvious
closest distance which is included in the RDF count.
The fact that the shape is irregular means replacing
the 1mr2 term in the integration for the KBI with a

Py v specific shape term (the surface defined by the

minimum-distance r to any solute atom). That shape

term is the original shape for the inmost set of molecules, then something like
the outline shape shown further out, shown with a new set of molecules with
their individual shortest distances. Convergence with radius is rapid compared to
the generic KBI - in this example a distance of 8 A does a good job so the
calculations become more tractable. The "nearest-atom" definition ends up
giving atomic, rather than molecular, densities. This also turns out to be
convenient because atom-specific RDF are deeply meaningful in the new
procedure. Conversion to real-world densities (and KBIs) requires a
normalization via the concentration of minimum distances in the absence of
solute-solvent interactions, which is used instead of the bulk concentration that
appears in standard RDFs.

The reason that the atom-based approach is so attractive is that the new RDFs
peak at meaningful distances, especially H-bond distances. The water-protein
RDF shows a strong peak at the expected H-bond distance ~1.8 A, as we

would expect, plus a "second shell" peak at ~2.7 A. There is a similar peak for
urea and the protein, which is consistent with urea having favourable overall
interactions with the protein. You can also find TMAO peaks near the protein,
which does not fit with the fact that the TMAO interaction is overall unfavourable.
This is, again, why KB analysis is so powerful. It is not at all surprising that
TMAO has at least some H-bond interactions with the protein, and that is what
the RDF shows. The important point is that these interactions are relatively

21 Leandro Martinez and Seishi Shimizu, Molecular Interpretation of Preferential Interactions in Protein
Solvation: A Solvent-Shell Perspective by Means of Minimum-Distance Distribution Functions, J. Chem. Theory
Comput. 2017, 13, 6358-6372



smaller than the urea ones and the overall effect is that the large excluded
volume term from the protein is not overcome by those interactions.

It seems to me that this more subtle way to analyse MD calculations, especially
for the complex interactions with large molecules such as proteins will prove to
be a powerful, general-purpose tool for understanding what is going on.

2.6 KB and lonic Liquids

In the Green Solubility chapter | discuss the rise and fall of the myth that ionic
liquids (ILs) are green and wonderful. It is now clear that they will almost never
find mass use as green solvents. Instead they will be used on solubility problems
for which other classes of solvent are intrinsically useless. The importance of ILs
will not be as replacements for conventional solvents but as solvents that can do
what cannot be done by conventional solvents.

Because their solubility properties are unique it is important to identify what
aspects of solubility make them unique. The first of these is the strong
dependence of their properties (e.g. solubility and viscosity) on water content.
It is easy to speculate about what happens between the water and the ions.
With sophisticated equipment it is possible to look at various ion-ion and ion-
water interactions. The beauty of KB is that the simplest basic experiments
(densities, water vapour pressure ...) provide the assumption-free answers to
key questions, via the G, values where 1=water and 2=IL. The answers to 3
questions for 3 aprotic and 3 protic ILs are provided in a paper?? by Shimizu and
colleagues. First, the values of G, do not change much with water content, so
the water has little effect on ion-ion interactions, whether the ILs are protic or
aprotic. Second, from G, values, there are very large differences between ILs
on the degree of water self-association. At low water concentrations, the self-
association varies from very low (i.e. water-IL interactions are strong) to very
high. And at higher water concentrations (above 0.1 mole fraction) many ILs
show no interesting effects but a very hydrophobic IL shows a huge increase
of G,, indicating movement towards phase separation. Thirdly, the ion-water
interactions via G,, show big differences in dependence on the mole fraction of
water. The data go up to 0.5 mole fraction which sounds a lot, but with a typical
10x difference in MWH, that is only ~10 wt% water. The most dramatic changes
in Gij values happen between 0 and 0.1 mole fraction, i.e. ~1 wt% water which
(sad experience has shown) can easily contaminate a nominally "dry" IL.

The precise details are not important as the six molecules in the study are

an insignificant fraction of ILs. The important point is that just these six are
sufficient to show that for any IL question of interest (e.g. protic versus aprotic)
there are no simple, general rules of how water affects the IL so there can be

22 Joshua E. S. J. Reid, Richard J. Gammons,John M. Slattery,Adam J. Walker, and Seishi Shimizu, Interactions
in Water—lonic Liquid Mixtures: Comparing Protic and Aprotic Systems, J. Phys. Chem. B, 2017, 121 (3), 599-
609



no simple general rules of how water in ILs will affect their behaviour. For any
given IL system, the nature of the water-IL interactions could be worked out
rather indirectly from extensive experiments with, say, NMR and FT-IR. The
message here is the same as in other cases: simple experiments directly reveal
fundamental information. On the basis of these fundamental insights it can be
highly fruitful to use specific techniques such as FT-IR to gain more details. The
later section on Hofmeister ions shows that such a parallel approach works very
well.

Those who wish to go beyond the limitations of KBI to look for predictive
capabilities could readily get a robot to do the large number of simple high
throughput experiments required to get enough data to be able to mine it for
scientific insights. This brings us to an interesting point.

2.7 KB and the end of stamp collecting

The literature in the areas discussed in this chapter seems to me to be filled
with "stamp collecting" papers. Some random data on some random system

is analysed in an ad hoc manner and the paper adds no significant advance in
understanding or predictability to the relevant community. Although one might
argue that science ultimately can advance via such an approach, it can equally
be argued that this is a deeply inefficient way.

The better way is to have a clear hypothesis which, if true would underpin future
work or, if false, would allow other hypotheses to have a chance. The trouble
with many of the topics in this chapter is that hypotheses, if they existed at all,
were generally too vague ("x is caused by changes in water structure") to be
refutable.

A defence of stamp collecting papers is that when there are enough of them,
they can become "big data" and be "mined" for information which might, in

turn, generate clear hypotheses to be tested. As | have spent many deeply
frustrating days trying to mine data from many such papers | can assure readers
that it takes only one nugget of information to be missing from a paper to make
it impossible to mine anything useful. This is in addition to the frustration of
having to read data off graphs (an on-line tool for doing this is on the Bookmark
bar in my browser as | have to use it so often) and to cope with strange and
inconsistent units.

We cannot do anything about the past. But we can do something about the
future. Imagine what would happen if all papers about these complex solubility
issues routinely provided relevant G, values. We would have the chance to see
a bigger picture, to support/refute hypotheses and to start generating prediction
rather than retrospection. If obtaining these data required exotic experimental
techniques then such a dream would be fatuous. But because it requires low-



tech measurements on solutions that have to be created for the other aspects
of the research, we gain a lot of information for very little extra work.

My personal commitment is to find ways to crank out large volumes of KBls in
rather boring systems so that people smarter than myself can data-mine them
for deep, predictive insights. This is a task that would be career suicide for an
academic. And a decade ago it would have been a task that could only have
been done by a well-funded academic or industrial organisation.

Fortunately, this is the 21st century and it is now cheap and easy to create
sophisticated chembots and mixbots with versatile browser-based interfaces
for data gathering and analysis. The Makers Movement and Open Source
have made these things so simple that even | can do it.

My first chembot took me a weekend to construct, and I'm a complete klutz.
When | took it to a university lab to get it up and running, it was all done in

a few hours. The fatal flaw in the plan was that although the chembot could
easily make 100 ternary solvent blends (yes, very boring), getting the density
and vapour phase data from those 100 tubes was not trivial, so the approach
was never going to scale. For example, caps had to be screwed on to the 100
tubes by hand then unscrewed ready for measurements in a densitometer
which in turn required taking out samples with a syringe and injecting them
into the densitometer. The tasks are trivial, but they take up a lot of time and
are very tedious. Automating them is not something that | can engineer in a
weekend.

It was my fault for not thinking things through. At the time of writing, a second-
generation mixbot which allows density and vapour phase data to be gathered
immediately after mixing is being tested. When this works, a general-purpose
KBI machine will be able to crank out thousands of values on relatively simple
systems (hydrotropes, solubilizers, ternary solvent blends), all at trivial cost if
you happen, as | do, to have some brilliant colleagues who are smart enough
to invent the key element of the mixbot and Open Source it to the wider
community, and who can work out how to re-purpose an old mass-spec system
lying around doing very little.



3 Hansen Solubility Parameters

Solubility is so obviously complex that it seems unlikely that any simple theory
can be of much use. The assumption-free KB theory isn’t especially hard, but
it is still rather abstract and it does not (yet) provide us with any way to go from
molecular knowledge to solubility knowledge. In principle, as discussed in the
KB chapter, we can get a lot of information from molecular dynamics, but in
practice MD has not proved to have the right balance of speed and simplicity.

So decades ago when Joel Hildebrand proposed that a lot of solubility issues
could be captured in a single number, the Solubility Parameter, SP, there
was both scepticism and relief. Scepticism from experts that such a simplistic
approach could be of any value and relief from formulators who could see the
possibility of a simple and respectable route to solubility predictions.

Both attitudes were somewhat justified. For the relatively simple systems

that Hildebrand was analysing, the theory proved to be not at all bad, though

its limitations were clear to everyone with the knowledge to comment on it,
justifying the sceptics. The problem for the enthusiasts was that Hildebrand had
proposed his theory only for molecules that had no significant polar or H-bonding
possibilities, and that the enthusiasts ignored this severe restriction. So it was
easy to show theoretically that Hildebrand SP were utterly inadequate for the
real world, and it was equally easy to be a disappointed formulator when SP
predictions turned out to be misleading.

It is a matter of great wonder to me that in 2017 people are still using Hildebrand
SP in situations where they are refuted by the theory's own assumptions. So
here is the first take-home message on SP: Never, ever, use Hildebrand SP;
they were, are and always will be utterly useless for most real-world formulation
issues. This denunciation of these SP is in no disrespect to Hildebrand. His
basic insights into SP revolutionised practical solubility thinking and when the
hard work was done (by Hansen) to overcome their intrinsic limitations so that
they worked for polar and H-bonding systems, Hildebrand’s vision became a
practical reality. So this chapter is about the hugely (unreasonably) successful
Hansen Solubility Parameters (HSP - note they can be singular or plural)
approach.

But before getting to HSP, let us first explore the toy world that Hildebrand
created in order to grasp what SP are about.

3.1 Regular Solution Theory and Lattice Theory

Imagine a world where all solvent molecules are spheres that, conveniently for
us, sit on a lattice structure. Or, instead, don’t just imagine it, have a look at it in
3D:



Here we see a set of blue molecules (call them 1) neatly arranged on a
cubic grid. The fact that real molecules are not spherical, nor do they sit on a
regular grid does not bother us. Our concern here is that the molecules have
an attraction for each other which gives them an enthalpy and they have an
ordering which gives them some entropy.

Lattice Theory
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App 3-1 https://www.stevenabbott.co.uk/practical-solubility/lattice.php

We have no interest in the absolute enthalpy or entropy. What concerns us is
what happens when we replace some blue molecules with red ones (of type 2).

Lattice Theory
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Figure 3-1 The lattice with a random 50:50 mix of molecules

In this example the red and blue molecules have been given the same
properties (the & values which will be explained shortly) so there is no
enthalpic penalty from replacing lots of 1-1 interactions with lots of 1-2 and 2-2


https://www.stevenabbott.co.uk/practical-solubility/lattice.php

interactions. Instead we have gained in free energy because we have more
disorder (the random arrangement of blue and red molecules) and our change in
entropy, TAS, is -3.12, so our AG is also -3.12. This gain in (i.e. lowering of) free
energy simply by creating disorder is the key driver of solvent/solute mixing, i.e.
of solubility in general. Polymers are less easy to dissolve because the gain in
entropy is far less because the monomer units within the polymer gain relatively
little extra freedom.

This section is about Regular Solution theory and Lattice theory. All that the
first term means is that we can calculate the entropic term simplistically (as if
we were dealing with an ideal solution) whilst attending to a non-ideal enthalpic
term. The Lattice theory part is just a way to let us calculate entropic and
enthalpic terms easily.

So what about enthalpy? In this toy world, enthalpy can at best be neutral (which
is what we’ve arranged here) and in general will make things worse. So our
-3.12 gain in free energy is as good as it gets.

To understand the enthalpic effects let us start with something we know (in
principle) about each molecule, which is how much energy it takes to remove all
the molecules from the lattice and place them in the vapour state, the enthalpy
of vapourisation. What we have done in the above example is to say that the
enthalpies of vapourisation of the different molecules is the same. To remove
50% of the blue molecules and replace them with red molecules can only be
enthalpically neutral if the energy lost by evaporating those blue molecules is
recovered when we condense the red molecules. Another way to talk about this
is via the cohesive energies of the molecules which are basically the enthalpies
of vapourisation because these are the energies needed to break the cohesion
in the lattice. It turns out that cohesive energies on their own are not too useful.
Hexane and decane have very different cohesive energies because decane is
a bigger molecule. Yet we know that in solvency terms they are very similar.
Instead, let us talk of the cohesive energy density which is cohesive energy
divided by MVol. Now hexane and decane are rather similar, as we would
expect.

Finally we define the SP & which is the square root of the cohesive energy
density. The units are the rather inconvenient MPa”. If our two molecules are
very similar (say hexane and decane) then &, will be similar to d,, if they are
very different (say hexane and ethanol) then the & values will be very different.
And we can justify the act of "not caring about the enthalpy values" in the first
example because whatever the magnitude of the & values, as long as they are
equal there is no enthalpic penalty for mixing.

Now we can introduce some equations into our lattice model. Remembering
that the change of free energy, AG is made up of two terms, AG = AH-TAS we



see, first, the entropic term which depends on the number fraction, n, of each
molecule:

Equ. 3-1 AS = n, log(n,) + n, log(n,)

Then we have the enthalpic term which uses the SP plus the number z which
we can ignore, it is just the number of molecules around each molecule in the
lattice, in this case 4:

Equ. 3-2 AH =—nn,z(5,5, - 0.5(5," +5,))

When 6,=0, the AH term is zero and AG is made up only of the (helpful) entropic
term. When the molecules are very different (hexane and ethanol) then the 6
values (derived from the enthalpies of vapourisation) are very different so that
the AH term becomes large and positive, which means that the free energy of
mixing can become positive, which, of course, means that mixing (or solubility)
is unfavourable. Taking the same 50:50 mix as before, but changing the SP
parameters to 14 and 16.5 we find that the entropic advantages are quickly
overwhelmed:
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Figure 3-2 On the borderline of solubility. The different & values give an enthalpic loss

What is happening is that the enthalpic gains from interactions between 1 and 2,
0,0, are overwhelmed by the loss of the 1-1 and 2-2 interactions in the average
of 5,2and 3,2

A large part of solubility theory is taken up by finding ways to calculate the “bad”
(or occasionally “good”) effects of 1-2 interactions compared to the loss of the
“good” interactions of 1-1 and 2-2. Multiplying the two different terms to give
0.0, is the so-called “geometric mean” approximation compared to the normal
average of 8,> and d,2.

And that’s it for the theory. We could spend a lot more time looking at subtle
refinements, but it makes little difference. Why bother with subtleties when
the whole model is a toy world? The take-home message is that if we know the



cohesive energy densities of molecules then with some rather simple accounting
of enthalpic differences combined with some trivial entropic calculations, we

can get a reasonable estimate of what happens when we try to mix or dissolve
molecules.

The situation can be made to look slightly more respectable in terms of KB. One
of the key equations we saw early on had (G,,+ G,,- 2G,). This is capturing the
same issue - the balance of 1-1, 2-2 and 1-2. Making regular solution theory
respectable requires a proper link between the rather naive assumptions of
lattices etc. and the true picture as captured in Kirkwood-Buff Integrals. That is a
work in progress®.

Now we have the simple outline of a theory, we have to abandon the pretext that
everything about a molecule can be captured in a single SP.

3.2 Hansen Solubility Parameters

Once the initial enthusiasm amongst formulators for the Hildebrand SP approach
had died down upon the realisation that it just didn’t work (and, indeed, nor could
it have worked), the obvious thing to do was to remove the assumption that
molecules could be described with a single parameter and add one, two or even
three more. Adding just one meant that molecules had a general “dispersion”
element (the basic van der Waals interactions) plus a “polar” element. This
approach did not achieve much because something like ethanol has a polar
parameter similar to something like acetonitrile even though they are very different
solvents. Adding three parameters seemed an excellent idea, giving: dispersion,
polar, H-bond acceptors and H-bond donors. Few chemists would want much
more. Unfortunately, despite many efforts to make this highly-logical approach
work, the donor/acceptor interactions proved too hard to implement. Not only

did it require the determination of these parameters, formulae equivalent to the
geometric term for cross-molecule donor/acceptor interactions had to be found.
There has never been agreement on how best to do this just for two molecules
and everything gets worse when trying to handle solvent blends.

So we end up with the slightly unsatisfactory compromise of adding just two terms
to give a total of three parameters: dispersion, polar, and hydrogen bonding. On
the positive side, this compromise has been wildly (unreasonably) successful for
50 years. Breaking the total cohesive energy dTot into three parameters poses no
intellectual problems in terms of Regular Solution theory. One just makes sure that
the sum of the squares of the three parameters equals &Tot. The challenge lay

in working out what those parameters would be for all relevant solvents, solutes,
polymers and, as it turns out, pigments, nanoparticles etc.

If we had to do the task today we would start with a large dataset of properties
such as enthalpies of vapourisation from which to extract 5, then would use

23 Seishi Shimizu, personal communication



some neural network that knew about the functional groups of each molecule.
The neural net would get some self-consistent set of values which bootstrapped
onto notions such as refractive index being strongly linked to the dispersive
component, try to link the polar component with dipole moment and attempt
some correlation with whatever groups can provide H-bonding including small
contributions from aromatics as well as the obvious -OH groups. Indeed, in the
HSPIP software described later, this sort of approach helps greatly in expanding
the quality and quantity of HSP values. But Hansen had little computing power
and there was no concept of "big data" so he more-or-less bootstrapped his way
to a set of values using “all available means”. What is remarkable is that the
majority of those values have stood the test of time.

Once the basic set was established it became possible to measure the HSP
of polymers. Because polymers have no meaningful enthalpy of vapourisation
there seemed no hope of establishing HSP values for them. But using the core
idea which makes HSP so useful across so many areas, the HSP “distance”,

it became routine to measure the values not only of polymers but of pigments,
nanoparticles and crystalline solids.

So now we should find out about this core idea of distance, linking it to the
earlier ideas of regular solution theory.

3.3 Distance

Let us play with the idea that we can define a Distance between two molecules
based on their (for simplicity) Hildebrand SP. We define the distance, D, as a
simple Cartesian distance D* = ( , - 3,)>. The hypothesis is that this captures a
key thermodynamic aspect of these two molecules and we can readily see what
that is if we expand it: D =82 + 8,7 - 28.0,. This is exactly the term used in the
Regular Solution theory to calculate the enthalpic effect, balancing the gain from
1-2 interactions with the loss of 1-1 and 2-2 interactions. So when D is small,
there is a very small enthalpic problem and when it is large the two molecules
are unhappy in each other’s presence.

We can now properly introduce HSP and the Distance parameter with all that it
entails. We have the three parameters 0, 3., 0, representing Dispersion, Polar
and H-bonding respectively. We know that, by definition, 5_* =8, + 5.,* + 5, ? but
that’s of no great use to us. Instead we are interested in the distance between
two molecules which should be defined as:

D? =(6D,-6D,)* +(6B —6PR)* +(SH,—S5H,)’
Equ. 3-3

but actually is defined as:



D?> =4(8D,-6D,)* +(6B —6PR)* +(SH,—5H,)’
Equ. 3-4

The first definition is the same Cartesian distance as in the simple version and
breaks down into the same differences between the 1-1, 2-2 interactions and
the 1-2 interactions. The additional factor of 4 in the second definition has never
been properly justified, but the privileging of the dispersion term provides two
benefits - the fits to real-world data are better and the plots which result from it
are spherical rather than ellipsoidal. These pragmatic benefits are well worth the
slight controversy that has dogged the factor of 4 for 50 years.

A novel insight into the origin of the factor of 4 was discussed by Hiroshi
Yamamoto at the HSP50 Conference?* and at the time of writing further
developments are in progress.

Let us now use the Distance for a real-world benefit. Suppose we test a polymer
(or pigment, nanoparticle ...) in a set of solvents chosen to have HSP covering

a wide range of HSP space. We find that it is soluble in some and insoluble in
others. Or, more usually, we find that it is “happy” (soluble, swollen, dispersed)
in some and “unhappy” (insoluble, unswollen, sitting at the bottom of the tube) in
others. From these simple experiments we can work out the HSP of the polymer.
We can, for example, make a guess as to the HSP, then calculate the Distances
to all the solvents. If our guess is right then the Distances to all the good
solvents will be relatively small and those to the bad solvents will be relatively
large. We can even define a Radius which defines the resulting sphere - all good
solvents being inside that radius and all bad ones outside it.

Clearly we cannot get such a happy result via guessing, but it is not hard to find
an algorithm to search HSP space for polymer values that give the best possible
distinction between good and bad solvents. And this is how we measure the
HSP of unknown solids. And, this, incidentally, is the reason that HSP, for all

its faults and uncertainties, has proven so useful. Other theories might have
intellectual advantages, but there isn’t one that makes it so easy to determine
the key values of new materials, especially those (as is very much the case

in real life) where the chemical nature of the material is unknown. Take, for
example, a pigment particle with a dispersant. There is no obvious way to know
what the properties of the “true” particle are, nor how the dispersant (even if we
know its HSP) interacts with the particle and the environment. So the pragmatic
measurement of the effective HSP of this complex is about as good as it gets.
Hansen had some initial doubts about the validity of this approach which, after
all, is stretching Regular Solution theory to its limits. But at the time he was
working for a major paints company and there was no doubt about how useful

24 Hiroshi's talks on the "split 8D" explanation for the factor of 4 as well as insights into donor/acceptor can be
downloaded from https://www.hansen-solubility.com/conference/papers.php.
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these measurements were in practice, so he promoted the technique in general
and it has stood the test of time.

34 HSP Values

So far we have spoken of HSP in the abstract. Another advantage of HSP is
that their values make intuitive sense. After a while, an HSP user can make a
reasonable guess as to the values of a relatively straightforward molecule and
not be too far wrong. We will look at the three parameters one value at a time.

oD represents the dispersion or van der Waals component of a molecule and
for simple molecules it represents the whole of HSP. We know that even a
boring molecule such as hexane has a significant enthalpy of vapourisation
and we know that 6D must (via the square root of that enthalpy) be a modest,
finite value. In fact for hexane that value is ~15MPa”. For solvents that have
very low enthalpies of vapourisation such as silicones or fluorocarbons,

oD can drop to 11 or 12. Cyclohexane is more compact (higher density)

and more self-associating so its D is nearly 17. Aromatics happen to have
some H-bonding component but they are mostly 6D and we know that

they self-associate (11-11*) and are harder to evaporate so it is no surprise
that benzene’s &D is 18. Once we start adding chlorine or sulfur atoms to

an aromatic we can easily be up in the low 20s. And that’s about it for dD,
other than to point out that it has a strong correlation with refractive index
which is, at a deeper level, a correlation with the polarizability of a molecule.
Those molecules with more electrons able to move freely at the surface
have a higher polarizability, a higher refractive index, stronger van der Waals
interactions and a higher dD. 8D is often dismissed as boring, yet it is often
the dominant HSP component because all molecules have van der Waals
attractions while polar and H-bond components, when present, can often be
relatively small.

OP is strongly related to dipole moment, so we know that hexane will have a
value of 0 and that something with a large dipole moment such as acetonitrile
will have a large OP. It turns out to be 18 and it then is no surprise that
DMSO is ~16, acetone is 10, THF is 6 and so forth. You might not have got
those exact values, but the general trends make sense and there are no

big surprises. A symmetrical molecule such as 1,4-dioxane has no dipole
moment. In this case the correlation breaks down because dioxane is not a
"non-polar" molecule.

OH is, once again, zero for hexane and for methanol it is 22. This allows us
to scale ethanol and propanol as 19 and 17 because their -OH is “diluted”
with CH, groups. DMSO is a good H-bond acceptor with a value of 10 and
acetone has a value of 7. When Hansen did his original experiments he
found that he had to give a small value of &H to aromatics like benzene and
toluene. This “mistake” was the cause of some criticism but Hansen stuck
with experimental data and kept those values. It was, therefore, with some
satisfaction when, 40 years later, the small but significant H-bonding abilities



of aromatics were formally recognised by IUPAC in their definition of the
H-bond. The values for simple aromatics are ~2.

Thus all three sets of values conform to a chemist’s intuitions. There is a great
benefit to this. There are many systems for estimating HSP from molecular
structures and many of them do a reasonable job in their comfort zone. But

try a molecule with a somewhat different structure and the system can provide
ludicrous values. On the day of writing this | happened to use HSPIiP's high-
powered estimator of a very complex anti-oxidant molecule containing multiple
-OH groups. The 6P and &H values both came out as 0.1. Clearly this molecule
had thrown the prediction algorithm out of its valid prediction zone. | also
happened to read a paper on the HSP of biopolymers. One of them was given

a oD of 8. It should have been obvious to authors and reviewers that this was
impossible. These are extreme examples but it makes the point that because the
HSP values conform to chemists’ intuitions, there is a chance that many errors
can be spotted in time. In each case, with common sense some reasonable
values could be substituted for the illogical ones. The erroneous 8D may be
from some published value in old-fashioned (cal/cm?®)”* which are a factor of ~2
smaller. A most egregious lack of common sense in another publication (I will
not quote the reference) was to point out that one molecule failed to fit whatever
trend was under discussion. The values used for that molecule were clearly the
old units, and if they had merely multiplied them by 2 to bring them in line with
the other units they would have found that the molecule fitted their trend.

3.5 Two more solubility theories

Via the HSP Distance we have a definition of “happiness” of a solute in a
solvent. But we haven’t said how that happiness impinges on actual solubility.
Fortunately we have two rather robust theories which (for all their faults) give us
a good idea of what to expect.

3.5.1 Ideal Solubility

The first theory is to do with crystalline solids. Let us suppose that we have a
perfect solvent in terms of lattice theory, so that the solvent-solvent and solute-
solute interactions are equal to the solute-solvent interactions. Unless we have
extra effects (such as strong donor/acceptor interactions) we cannot get a better
solvent. So, is the solute infinitely soluble in the solvent? Our experience tells us
that there are plenty of solutes that are, effectively, brick dust which no solvent
can touch and that there are others that seem remarkably soluble in a wide
range of solvents. The key to this is the idea of Ideal Solubility - the solubility

of a solute in an ideal solvent - defined in the terms above where 1-1 and 2-2
interactions equal 1-2 interactions, in other words with an activity coefficient of

1 at all concentrations. The word "ideal" does not mean "the solvent best able
to get this solute into solution". There are situations where a solvent which has
a much stronger interaction with the solute (e.g. a basic solvent with an acidic



molecule) has an activity coefficient of <1 but in many ways that is changing

the solubility issue from one molecule to another. There are borderline cases
where there are strong donor/acceptor effects between solute and solvent. They
definitely help but are not the focus of this section. Our definition of "ideal" is
"activity coefficient = 1".

The key to understanding the issue of ideal solubility is that lattice theory is

for compatibility of liquids. So to dissolve our crystalline solute we first have

to make it liquid - i.e. we have to virtually melt it. We know intuitively that high
MP1t solids will be harder to melt virtually and we can also imagine that solids
with a high enthalpy of fusion AH_ will be harder to melt. Those with advanced
understanding will recognise that changes of heat capacity between the real
solid and the virtual liquid will also be important. The thermodynamics capture
these intuitions precisely in the Ideal Solubility equation which gives us the mole
fraction, x, of the solute in the ideal solvent at temperature T when its MPtis T |
and it has the enthalpy of fusion AH_ and change in heat capacity of ACIo ;

Rin(x) = AH, (——— 1)+ AC, Ao ey
Equ. 3-5 L, T rr

Although this equation is correct, it is generally unusable as we are unlikely

to know the enthalpy of fusion and the change in heat capacities. Fortunately,
the careful analysis of this unhappy situation by Yalkowsky? tells us that the
uncertainties in our knowledge of the two uncertain parameters is generally large
enough that we can forget about them and use the delightfully simple alternative
for which we only need to know T _:

fu. 36 In(x) =—0.023(T, - T)

These ideas can be explored in the Ideal Solubility app:

25 Samuel H. Yalkowsky and Min Wu, Estimation of the Ideal Solubility (Crystal-Liquid Fugacity Ratio) of
Organic Compounds, Journal Of Pharmaceutical Sciences, 99, ,1100-1106, 2010
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App 3-2 https://www.stevenabbott.co.uk/practical-solubility/ideal.php

The graph tells us what the mole fraction solubility is in an ideal solvent, at any
temperature up to the MPt where, by definition, the solute is perfectly soluble
as they are miscible liquids. The app allows you to specify all three parameters,
though the Yalkowsky option is highly recommended if you only know the MPt.

The point is not so much the calculations but the realisation that before you
even bother with HSP (or, as discussed in the next chapter, COSMO-RS) you
should have an idea of what the ideal solubility will be. If you absolutely require
x=0.2 for your application and the ideal solubility is 0.1 then HSP cannot help
you. If you require x=0.05 and the ideal solubility is 0.3 then you don't have to
be too fussy about what solvent to choose. Or, if you have the 0.2 requirement
with the 0.1 ideal solubility, then you need to find some positive (non-ideal) way
to encourage the solute into the solvent via clever donor/acceptor or acid/base
interactions.

3.5.2 Flory-Huggins

The second theory is necessary for understanding polymer solubility. Here we
assume that the polymer is 100% non-crystalline. As soon as you add polymer
crystallinity then the equivalent of ideal solubility has to be factored in and life
gets too complex.

As we saw for non-polymers, solubility is a mix of entropic and enthalpic effects.
The problem for polymers is that the enthalpic effects are similar to those of
small molecules, i.e. they seldom help, are at best neutral and usually hinder,
while the entropic effects are much smaller. All the monomers linked together
through a lattice are guaranteed to have less entropy than their equivalents
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sitting as individual monomers on the lattice, and the gain of entropy by mixing
with the solvent is rather small.

This means that the solubility of polymers in solvents is often not very large.
Although this is true, we can be confused by another fact which is that the
solubility of solvents in polymers can often be large. Such facts are not often put
that way. Instead, polymer physicists talk about "spinodals" which, while being
correct, is less useful to most of us than knowing that dissolution of polymers
(polymers in solvents) is much harder than swelling (solvents in polymers).

The key equation is called Flory-Huggins and is expressed in terms of volume
fraction ¢ because mole fraction makes less sense for polymers. Where 1 is the
solvent and 2 is the polymer and the enthalpic interactions between polymer
and solvent can be defined by the x (chi) parameter (to be discussed shortly),
we find that the change in chemical potential (a negative change is good for
solubility) is given by:

Au, = RT[In(p) + 9, (1= 2) + 79,1
Equ. 3-7 X
The factor x is the ratio Mthonmer/ MWt_ . When this is large (large MWt
polymer) 1/x tends to 0, meaning an increase (bad) in the ¢, contribution to

the overall the entropic contribution. Clearly, the larger X, the more positive the
effect of ¢, and the worse the solubility. What is not clear is that the shape of the
curve of Ay_can have a subtle dependence on @,. For low x values (below the
magic number of 0.5) the polymer is soluble at all volume fractions. For high x
values (say >0.7), Ay increases so rapidly that it is obvious that the polymer is
not soluble. At intermediate x values the curve dips negative then goes slightly
positive then negative, as in the screen shot from the Flory-Huggins app:

Flory-Huggins
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App 3-3 https://www.stevenabbott.co.uk/practical-solubility/polymer-solubility.php

At a critical inflection point, shown by the first vertical blue line, the polymer is no
longer soluble in the solvent. At a second critical inflection point, marked with the
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red vertical line, the polymer and solvent are again compatible. If we have (as
shown in the input) a @, of 0.1, which is between these points, what do we find?
The two points are the "spinodal” points which means that the system splits
into two. Two phases appear in the test tube, with the dilute polymer solution
(light blue) on top and a swollen polymer on the bottom. Here's the important
bit. The concentrations of the two phases are fixed by the shape of the Flory-
Huggins curve. In this example there is 0.011 of polymer in solution and 0.188
in the swollen phase, i.e. the polymer contains 0.812 solvent. What happens

if we have 0.15 of polymer? We still have two phases in the test tube and they
are still 0.011 and 0.188, but we have a different ratio of the two - more of the
lower phase and less of the upper. Try it in the app to get a feel for this. The
spinodal splits systems into two phases, their concentrations are fixed for any
starting concentration between those two points, only the ratio of the two phases
changes. For those who think that the splitting points should be the minimum
and maximum of the curves, you are partly right - these are the "binodal" points
but in practice the spinodals win.

There are two important practical points here. First, although this polymer is
scarcely soluble in this solvent (you can only get 0.011 volume fraction), you can
still get 0.812 solvent into the solvent. It is very easy to make the assumption
that if the polymer is rather insoluble, the solvent won't "touch" the polymer.
Second, when you play with the app you find that small changes of x or of MWt
(which affects 1/x) can flip the system from soluble at all fractions to rather
insoluble (though with lots of swelling). A formulation which seems to be fine
can flip to unworkable if you happen to have been in a zone with x close to the
critical value and if there is a small change to the solvent (blend) or a change in
supplier of the polymer which means a somewhat higher MWi.

There is a further subtle point to do with language. We have a strong intuition
that we know what "solubility" means. So when we have a polymer and solvent
system where the polymer is not completely soluble we say that it is "insoluble"
and think we know what this means. The spinodal example shows that we have
one phase which is nearly 20% polymer. By no normal definition of "insoluble"
can you have a 20:80 mix of polymer:solvent. The solvent and polymer,
therefore, are not desperately unhappy in each other's presence on this side of
the spinodal. The final chapter discusses why our (mis)use of solubility language
so often leads us astray, and makes positive proposals of how we can avoid
falling into these linguistic/scientific traps.

3.5.3 xin practice
Clearly it would be a good idea to know x for our polymer/solvent system. If

you happen to have a lot of time and money, plus a neutron source, you might
be able to measure x. But as a splendid review ("Beware the Flory parameter")



shows?, the maijority of such x values are, to put it politely, of dubious value.
Instead, let us use a straightforward way to work out x in any system that
interests us. Hansen showed a long time ago that we can replace x with the
HSP Distance, D, via:

4= MVol.D’
Equ. 3-8 4RT

Given that it is trivial to calculate D for any solvent (the MVol term is that of

the solvent) if the HSP of the polymer is known, we can very readily work out
where we are in terms of Flory-Huggins. This raises the question of why the
difficulties raised in the Miquelard-Garnier review can be so readily overcome
by a relatively simple theory. The answer is that the act of measuring the HSP of
the polymer is defining the border between soluble and insoluble (or, perhaps,
between single phase and spinodal), so the uncertainties about the polymer, its
purity, its MWt distribution etc. are all swept up into the measurement itself.

This means, as HSP users regularly find, that you cannot just take "the" HSP for
a polymer and use it. It does not require much of a difference in % head-to-head
polymer or "helpful" co-polymer or slight degree of cross-linking etc. to make one
sample of polyX behave significantly differently to another sample - at least near
the critical spinodal zone. A very good solvent for one polyX will be a very good
solvent for the other polyX. And the same, in reverse, for a very bad solvent.

But a "just about good enough" polymer for one polyX might be rather useless
for another and a "borderline bad solvent" for one version might be borderline
good for another version. As the Flory-Huggins app shows, near the spinodal
the chemical potential curve is balanced delicately so that a small effect in either
direction can tip it one way or another.

You are always welcome to be a purist and spend a year studying the neutron
scattering of a polymer in a few (deuterated) solvents. But a few days work with
a bunch of solvents to calculate the HSP sphere and you have much of the
information you need for practical formulations.

3.54 xand KB

Although this chapter is about lattice theory, it is interesting to see what happens
when x>0.5 using the KB approach. The broad-brush entropy/enthalpy approach
from Flory-Huggins gives no insights into what the molecules are doing before
and after the spinodal separation. The reason KB is used throughout the book

is that it gives an intuitive picture of what is happening. So let us see what that
picture is in this case.

26 Guillaume Miquelard-Garnier and Sébastien Roland, Beware of the Flory parameter to characterize polymer-
polymer interactions: A critical reexamination of the experimental literature, European Polymer Journal 84 (2016)
111-124



Following the logic of a paper by Horta?’, we start with something that can

be observed in principle, the zero angle scattering structure constant which,

for simplicity, | will call S though it is really S_(0). The "cc" is "concentration-
concentration" and the fact that our KBI values are "concentration-concentration’
fluctuations is not a coincidence. As discussed in the KB chapter, the
relationship between scattering and KBI is a precise one and those skilled in the
art can rapidly change between them when necessary. In our case, Horta points
out that we can get S from x and from S we get the Gij values via the following
sequence, where the MVols of the solvent, 1, and polymer, 2, are V, and V, and
where r=V_/V .

1 1 1
rh ——2y
Equ. 3-9 P TP
G, :ﬁ[i_lj G,=-§ L Gy :E(i_ j
Equ. 3-10 P\ rOP, P2\ 79,
ou, 1
Equ. 3-11 d¢, ¢ (1+6,(G,,=Gy))

The screen shot shows how this works within an app
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App 3-4 https://www.stevenabbott.co.uk/practical-solubility/kbchi.php

From the change of chemical potential with concentration a little bit of arithmetic
gives us the dependence of y on ¢, which is basically what we plotted in the

27 Arturo Horta, Nonrandom Distribution of Molecules in Polymer Systems. 1. Theory and Model Calculation,
Macromolecules 1992, 25, 5651-5654
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conventional Flory-Huggins app. In the screen-shot, the system is just poised to
flip into the spinodal state because ¥ is just below 0.5.

Now we get a chance to see what is happening. The solvent is bunched up

on itself, with the large positive G,,. The solvent and polymer are unhappy
together, shown in the large negative G,,. The most significant behaviour is

the polymer's. At a smaller x it plunges to a large negative value, thanks to the
excluded volume of such a large molecule. Yet now it is turning positive because
it wants so little to be associated with the solvent. Looking at the G_,-G,, term in
the derivative equation, as soon as G,, becomes larger than G,, which itself is
negative, the derivative becomes positive and the system starts to flip. You have
to play with the app to see all this in detail. At the point of flipping, KB theory
breaks down and the curves become rather too wild to be informative. But we
have already achieved something significant. Just with two MVols and a x we
can see at the molecular scale what is happening to cause a system to flip.
Although the flip is sudden, it does not just "happen" as Flory-Huggins suggests.
We can see that the solvent and polymer are already starting to self-associate.
The flip is just the result of self-association going a bit too far.

There is one other point. The G; values in the range of ¢, = 0.3-1 show no
special features. The polymer and solvent have no problems co-existing in this
range. Although by definition they don't much like each other, even at 50:50 G,,
is more negative than G,, so the system is stable. Why is the polymer-polymer
self-association worse than polymer-solvent? It is simply the excluded volume
effect. It is much easier to have a bunch of solvent molecules close to the
polymer chain than another polymer chain. So the solvent is happily soluble in
the polymer in this higher @, range. This sounds strange, because we "know"
that at high x values the polymer is insoluble. This takes us back to the earlier
discussion about solubility language. The reason we don't habitually think that
the polymer is happily soluble in the solvent is that in this domain we only talk
about the solvent "swelling" the polymer. By using a different word we frame our
thoughts away from the word "soluble" so we don't even question whether we
can say that the solvent is soluble in the polymer. And in any case, we cannot
do conventional solubility experiments because the viscosity of the system is
too high, so we just do swelling experiments as if they are some totally different
phenomenon.

While on the subject of language, when it comes to water and somewhat
hydrophobic polymers the language tends to imply that something dramatic is
happening when the water is sitting next to the polymer. Although the topic will
be discussed at length in the Language chapter, we can already see how the
previous paragraph helps explains why water effects might not be as mysterious
as they seem. The polymer, because of excluded volume, does not like being
next to itself so just about anything will work just fine. And all molecules have
mutual interactions via van der Waals forces so there is no problem for the water
to be next to the polymer and therefore no mysterious "hydrophobic hydration"



force needed to explain it. Discussions then go on about the fact that the water
next to the polymer has a different structure from bulk water. But any solvent in
contact with a polymer is going to have a different structure. Yes, the difference
is generally bigger when water is involved; but it is not some amazing new
phenomenon. In general, the G,, excluded volume KBl is far larger than G,

or G,, and whether the balance of KBI tips from negative to positive is often

a matter of subtle details that do not require explanations via vaguely-defined
concepts such as "hydrophobic hydration".

3.6 Polymer-Polymer (in)solubility

If you attempt the Flory-Huggins formula with two polymers, the conclusion is
rather shocking. It shows that for two polymers of degree of polymerisation of
1000 (~50K MWh), the x parameter above which they are immiscible is 0.002
and therefore the HSP Distance for miscibility is <0.1. The precise figures don't
matter because the conclusion is inescapable: most polymers are immiscible.
When | first heard this | thought it was just wrong. Surely you can take PMMA
and PEMA and make a stable polymer blend. Their HSP values are respectively
[18.6,10.5, 5.1] and [17.6,9.7,4] (Distance=2.4) which means that there are
many solvents in which they are mutually soluble, i.e. they behave rather
similarly, just as intuition would predict. This is true, but a high MWt blend of
the two polymers phase separates if you heat it for a while - they really are
immiscible. Indeed, it is worse than that. Even high MWt PE and deutero-PE
are also immiscible because deuteration is enough to create a small enthalpic
difference which the very small entropic mixing terms cannot overcome.

In practice one can readily make blends of PMMA and PEMA that are "good
enough", especially if their MWts are not too high. The kinetics of phase
separation are very slow. But if you heat such a blend for a prolonged period,
they will phase separate.

And yet there are many rather stable polymer blends of polymers with very
different HSP values. How can this be? The answer comes from Coleman and
Painter's huge body of work on donor/acceptor polymer pairs?. As they point
out, basic HSP can never have a x value < 0. The fact that donor/acceptor
polymer pairs are miscible can only be because x < 0. And this happens if one
polymer, for example polyvinylphenol, has the ability to donate a hydrogen
and the other polymer, such as polyvinylacetate is able to accept it. So
polyvinylphenol and polyvinylacetate are nicely miscible. The idea of donor/
acceptor is intuitively clear though with some thought an objection arises.
Polyvinylphenol form donor/acceptor bonds with itself - so why doesn't this win
out compared to donor/acceptor with the acetate? Coleman and Painter did
all the hard work of infra-red analysis of these systems to show that, indeed,
the self donor/acceptor effects do diminish the interactions with the acetate,
and that for any given donor/acceptor polymer pair there might be regions of

28 Michael M. Coleman and Paul C. Painter, Hydrogen Bonded Polymer Pairs, Prog. Polym. Sci., 20, 1-59, 1995



miscibility and immiscibility. If you have an interest in donor/acceptor polymer
pairs then you need to study the Coleman and Painter approach in detail. The
take home message for the rest of us is that HSP have a clear limitation - they
cannot handle donor/acceptor effects. This has been known from the beginning
(the heat evolved from mixing chloroform and acetone has often been cited as
evidence against HSP). In the introduction to this chapter it was pointed out that
a 4-D HSP would have been intellectually superior. But the gains (being able
to predict chloroform/acetone or polyvinylphenol/polyvinylacetate) are modest
compared to the difficulties faced by all attempts (including those of myself with
Hansen and Yamamoto) to make a general-purpose 4-D HSP. The work on
MOSCED? (Modified Separation of Cohesive Energy Density) which adds a
donor/acceptor term showed great promise but despite heroic efforts from the
Lazzaroni thesis*® never created a sufficiently robust and usable methodology
for anything other than some pure solutes in single solvents. The key issue is
that there is no coherent explanation of what happens to the relevant donor/
acceptor elements within and between solute and solvent. Chloroform/acetone
is very simple because the first is a pure donor and the second is a pure
acceptor. Coleman and Painter could do the hard work to see the balance of
internal/external effects in polyvinylphenol, but such work was a concerted
effort on some relatively well-defined systems. As we shall shortly see, HSP
are immensely powerful in terms of solvent blends and | am not aware of any
practicable system that can calculate the donor/acceptor complications for a
two-solvent plus polymer system. For general-purpose solubility issues the
simpler 3-parameter system works remarkably well provided the formulator is
alert to issues such as donor/acceptor effects specific to their own system.

3.7 One more polymer-polymer formula

The fact that most polymers are immiscible is sometimes used as an excuse to
deny the existence of one form of strong adhesion between polymers across
an interface®'. It is obvious theoretically that there will be a strong increase

in adhesion (compared to mere surface energy) if polymer chains from one
polymer can intermingle or entangle with those of the polymer on the other
side of the interface. But those who believe (wrongly) that surface energy is
important for strong polymer/polymer adhesion point out that most polymers
are immiscible and "therefore" such intermingling and entanglement cannot
take place. Fortunately this "disproof" of diffusion across the interface is, itself,
easily dismissed. Although we all agree that polymers are not generally fully
miscible, for adhesion we are not asking for miscibility - we are asking for there
to be some mutual inter-penetration of polymer chains across an interface and

29 Eugene R. Thomas and Charles A. Eckert, Prediction of Limiting Activity Coefficients by a Modified
Separation of Cohesive Energy Density Model and UNIFAC, Ind. Eng. Chem. Process Des. Dev., 23, 194-209,
1984

30 MJ Lazzaroni, Optimizing solvent selection for separation and reaction, PhD Thesis, Georgia Inst. Tech,, 2004

31 Afull discussion on the uselessness of surface energy and the usefulness of intermingling/entanglement can
be found in my Adhesion Science: Principles and Practice book and on my Practical-Adhesion website.



the thermodynamics of this are clear. The Helfand formula3? (note that the title
of the paper is all about interfaces between immiscible polymers) tells us that
the distance, d, polymers of "effective" segmental length b (generally a few
monomer lengths) can intermingle depends on the x parameter or the HSP
Distance, D:

d:\/i:\/4RT.b
EqU. 3_12 6}( 600D2

The exact conversion of x to HSP Distance isn't entirely certain (the 100 is

a nominal MVol for a monomer unit), but the message is clear that a smaller
HSP Distance gives a larger intermingling across the interface and, therefore,
stronger adhesion between polymer phases. This applies to classic adhesion but
also to compatibility of polymer blends.

Polymers across Boundaries

b nm X dnm : HSP D
15 0.2

—t) > =g ) |2-74:4-5 |

App 3-5 https://www.stevenabbott.co.uk/practical-solubility/polymers-across-boundaries.php

The Miquelard x paper referred to earlier has a good discussion on the
applicability of Helfand. Although the theory is not perfect, the evidence is that
it is remarkably good for practical purposes. It is strange that adhesion science
courses will spend hours discussing relatively useless surface energy effects
and do not even spend minutes discussing the implications of the Helfand
formula and the practical power of HSP in understanding adhesion effects.

3.8 Solvent blends

If you have the HSP of a polymer, pigment, nanoparticle etc. and wish to find a
good solvent for it, the process is simple: make a list of the HSP of all relevant
solvents, calculate their Distances from the solute and whichever is the closest
is the best solvent. Unfortunately, although "best" is correct in terms of solubility,
it is rarely "best" in terms of cost, flammability, odour, safety profile or any of the
other parameters of importance for a given formulation. It might be possible that
by doing down the list the best balance of solubility versus the other properties

32 E Helfand, Y Tagami, Theory of the interface between immiscible polymers, Journal of Polymer Science Part
C: Polymer Letters, 9, 741-746, 1971
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can be found and your search for the best solvent is over. It can equally happen
that shortly after this choice has been made, a safety committee, or some
consumers, or some government decides that that specific solvent is no longer
desirable and you are left without a satisfactory system.

It can also be the case that a property such as volatility might be correct for the
first part of a process but bad for the second part, or vice versa. So yet again, a
single solvent simply cannot do what is needed.

B0 o Returning to the early days of HSP, it occurred to
al |7 Hansen that one of the rules of HSP made a non-
s || L] intuitive prediction. The rule is that the HSP of a

mixture of solvents is the volume-averaged HSP of
the solvents in the mixture. Hansen then imagined
the situation shown in the diagram: a polymer with an
HSP shown as the small dot in the middle, a radius
of solubility shown as the bigger sphere, and two bad
solvents outside the sphere, on opposite sides. It is
obvious from the diagram that a 50:50 blend of these two bad solvents would
have an HSP right in the middle of the sphere - creating a perfect solvent. This
seemed scientifically sensible but intuitively false. Hansen realised that this was
the ultimate test of his ideas so he looked through his sets of solvents and
polymers and found an example with a bonus feature. The two (bad) solvents
happened to have the same Hildebrand SP so according to Hildebrand theory,
mixing them could have no effect on their inability to dissolve the polymer. Of
course, Hansen's experiment worked out well - the mix of the two bad solvents
produced a good solvent. He went on to find, and publish, many more such
examples and a recent experimental demonstration of the effect is discussed
below.

This principle of mixing solvents (good, bad or medium) to create an optimum
blend is immensely liberating. For example, if there is a cheap, safe solvent
that is not good enough for the solute of interest, adding the right amount of

a more expensive solvent to bring it into the solubility zone is straightforward.
Those who formulate coatings can do two different tricks. In some cases it is
desirable to have the formulation "crash out" very quickly during evaporation. By
choosing an excellent solvent with high volatility, very quickly after coating the
mix changes to an unfavourable one and the solute falls out of solution. More
frequently, the desire is to keep the solute as "happy" for as long as possible,
so that the poorer solvent must have a higher volatility. This keeps the system
mobile, allowing coatings to dry out with low stress (and therefore low curl)

and with high gloss. If, as is often the case, the formulation contains multiple
components with different HSP, the blend of solvents can be optimised to keep
one or the other in solution for as long as possible. The example shows that as
the more volatile, higher distance (shown as Ra), ethyl acetate evaporates from
the initial 50:50 mix, the cyclohexanone is a better match (Ra ~3)
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If, instead of wanting to match a solute, we want to match the HSP of a solvent,
in order to replace it (e.g. replace dichloromethane) then the same principle
applies - find the best blend of price/safety/volatility that matches the solvent
you wish to replace. | once had to replace, for a cleaning application, one
solvent blend (effective, volatile so easy to "dry", but unpleasant and unsafe)
with another solvent blend. Unfortunately the only safe pair of solvents | could
find were of low volatility, so cleaning/drying in a manner similar to the original
blend was not possible. They were also larger molecules so were much slower
to dissolve the difficult polymer. However, both these problems turned into an
advantage. The whole, complicated, system that needed to be cleaned could
be smothered with the non-volatile blend and we could attend to other tasks.
Coming back to the system after some time, with the non-volatile solvents still
there, it was easy to wipe everything clean then rinse with a very small amount
of the original blend to allow the system to dry out.

So rational solvent blends are a key solubility tool that enable many new
functionalities. As mentioned previously, the 3D-HSP might not be as perfect as
a 4-D system with donor/acceptor, but the absence of a rational theory of 4-D
solvent blends is a serious impediment for practical use.

There is a key problem in designing such blends. HSP has no way of knowing

if two solvents are miscible or not, so HSP might suggest a wonderful solvent
blend which is unusable in practice. This sounds like a severe limitation of HSP.
In fact it is a general problem of solubility theory. Many readers will know of
Wilson parameters for calculating activity coefficients. Famously, the Wilson
approach "predicts" that all solvents, no matter how high the activity coefficients,
are miscible at all proportions. Immiscibility is a very challenging issue and there
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is also a severe shortage of high-quality datasets of (im)miscibility on which

to base any prediction tool. Even the COSMO-RS solubility approach cannot

be relied on to predict immiscibility® in "borderline" regions. This is because
immiscibility is all about spinodals which, in turn, depend on subtle enthalpy/
entropy balances. The word "subtle" means "in the 1kJ/mol range". There is no
generally usable theory on the planet that can reliably calculate to this accuracy.
The "failure" of COSMO-RS to predict immiscibility in borderline cases is actually
a tendency to over-predict immiscibility in systems that just happen to be 0.5kJ/
mol the other side of the immiscibility line. Examples to do with water miscibility
are discussed in later chapters. Of course, COSMO-RS and HSP do a good job
for pairs that are obviously miscible or immiscible as these are very far from the
zones where 1kJ/mole makes any difference.

If even COSMO-RS cannot reliably predict immiscibility, those who use HSP to
design interesting solvent blends have to accept that some of their prospective
formulations will fail through a lack of miscibility.

F T T ] The idea that the addition of a bad solvent
5 | AT can make a better solvent has an

'| B important negative consequence for those
' who wish to use anti-solvents to

precipitate a solute at a chosen moment,

e.g. for microencapsulation. If, as in the
diagram, we suppose that we have a
borderline good solvent then we can
precipitate the solute with either of the two
bad solvents. The "good" anti-solvent
would be excellent because just a small amount will take the system outside the
sphere. The "bad" anti-solvent would be a disaster because by adding it, the
solubility will actually increase (heading to the centre of the sphere) before
decreasing and finally precipitating the solute.

3.9 HSP and Temperature

The diagram above also helps to explain a curious phenomenon seen from time
to time with polymers. Suppose you have a good, but borderline, solvent for your
polymer. Now increase the temperature of the system. What happens? We all
know that the polymer will be more soluble. Yet sometimes the polymer comes
out of solution at higher temperature. When this happens in water for a polymer
such as PNIPAM (discussed at length later), all sorts of special explanations are
offered. Here we are talking about normal humble solvents where there are no
known special effects. How does HSP help us to understand what is going on?

33 It is characteristic of the COSMO-RS team that they regularly point out the limitations of what a computer can
do and provide users with detailed computational outputs to allow sanity checking of the results. They equally
point out that experimental data contains flaws and that sometimes failures of the calculated results to match

experimental data are clearly because the data itself is flawed. Computer tools are optimal when paired with a
discerning human brain.
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The key is that HSP are related to cohesive energy density. If you increase the
temperature then the density goes down and, via well-known formulae, the three
HSP all decrease. For a solvent, the density change is relatively large so the
HSP changes are relatively large. For a polymer the change is much smaller and
can be assumed to be zero. Using the diagram from the anti-solvent discussion
we can now see what happens. The HSP of the borderline solvent are relatively
low. So by raising the temperature the values will head towards those marked
as the good anti-solvent, while the HSP of the polymer remains constant. So the
borderline solvent will become a bad solvent. Had the borderline solvent been in
the region close to the bad anti-solvent then raising the temperature would shift
the HSP closer to the centre, making a borderline solvent a good solvent.

In general, increasing the temperature of a polymer system increases solubility
because of the general temperature effect combined with the fact that most
solvents will not happen to be in the critical low HSP zone. It is important,
however, to be aware that the wrong choice of borderline solvent might cause
problems. Fortunately, HSP makes it very easy to check whether or not your
solvent is in the danger zone.

3.10 The HSP of water

The cohesive energy density of water is high, something we know because

of the high latent heat of vapourisation of water. It is quite straightforward to
estimate that the dD value should be around 15.5 and dP should certainly

be high, say 16. In order for the total cohesive energy to reach the high
experimental value, dH has to be 42. A quick check of the dH values of methanol
and ethanol (22 and 19) or glycerol (27) makes sense because water is so
obviously a strong hydrogen bonder. So the official HSP values for water are
[15.5, 16.0, 42.3] and that should be the end of the story.

If, however, you assume that water is a solute and measure its HSP by the
classic technique of plotting a sphere with good and bad solvents, using 1%
solubility of water in the solvents, then a very different set of HSP values
emerges: [15.1, 20.4, 16.5]. You can also get a set of values based on complete
miscibility, [18.1, 17.1, 16.9].

How can one solvent have two different values? Presumably, in an alien
environment the water molecules can turn in on themselves via internal H-bonds
so that the environment sees plenty of polarity but less H-bonding.

Charles Hansen's philosophy is to go with what works. He has found countless
examples where the use of the [15.1, 20.4, 16.5] or [18.1, 17.1, 16.9] set
produces good, insightful, actionable results, and plenty of other examples
where the [15.5, 16.0, 42.3] produces optimal results. In general these different
cases fit the idea that water in a minority behaves in the low 8H manner and that
water in the majority behaves in the high dH manner.



3.11  Are HSP meaningful for large particles?

We already know the pragmatic answer to that question: a resounding yes.
Starting with Hansen's own work in the paints industry, HSP are proven to be
useful for pigments, nanoparticles etc. All the same, it would be nice to have

a theoretical justification for this. Happily, some pioneering theoretical work by
the Coleman group in Dublin®** gives us exactly what we need: formulae for how
the dimensionality D affects the formulae for HSP of 0D (small molecules), 1D
(e.g. polymers and carbon nanotubes) and 2D (e.g. graphene) materials. It turns
out that with no loss of rigour the only difference between the HSP Distance
formulae are a factor of (1-D/3), where this is 1 for small molecules, 0.66 for
polymers/CNT and 0.33 for graphene.

A significant aspect of this work is that the Coleman group's main interest

was not theory for theory's sake but rather in the ability to use and formulate
CNT, graphene and other 2D materials. Other papers from the group show the
practical utility (with limitations) of HSP for these large, complex materials.

3.12 The problem of small solutes

Moving to a much smaller molecular scale, one of my disappointments with
HSP has been that predictions of the solubility of small solutes have been
disappointing. Similarly, when | was given privileged access to a gold standard
solubility dataset | was surprised and disappointed that attempts to measure the
HSP of the solutes, even with more sophisticated fitting approaches using full
solubility data, sometimes ended in failure. As | couldn't even define what my
problem was, there was no way | could go about fixing it.

Fortunately, a paper by the Rothenberg group in Amsterdam3® exactly describes
this problem, and provides a solution for it: "The [problem] is that the original
Hansen parameters exclude thermodynamic considerations. This is acceptable
for polymers (where the thermodynamics cancel out) but not for small molecule
solutes." The paper includes five ways of improving the ability to measure and
predict solubilities. One has been discussed already - handling donor/acceptor
effects. Their approach is frank about the difficulties faced by anyone trying to
create a set of coherent donor/acceptor parameters and contains some fresh
ideas. A second idea involves corrections that allow for yes/no solubility at
different concentrations to be accommodated within the fitting procedure. A
third way is to invoke a subtle distinction between fitting with the square of the
Distance or its square root. A fourth way is to correct for the MPt of the solute, as
a higher MPt automatically implies a smaller radius of solubility.

34 J. Marguerite Hughes, Damian Aherne, Jonathan N. Coleman, Generalizing Solubility Parameter Theory to
Apply to One- and Two-Dimensional Solutes and to Incorporate Dipolar Interactions, J. Appl. Poly. Sci., 127,
2013, 4483-4491

35 Manuel J. Louwerse, Ana Maldonado, Simon Rousseau, Chloe Moreau-Masselon, Bernard
Roux, and Gadi Rothenberg, Revisiting Hansen solubility parameters by including thermodynamics, XXX
ChemPhysChem 10.1002/cphc.201700408
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At the heart, and the other corrections feed into this, is the notion of an effective
radius, r_.. Instead of just having a Distance and a single sphere radius that
defines whether a solvent is good or bad, the Distance is compared to r_. which
depends on both the intrinsic sphere radius, r, and a "radius” of the solvent, r_
via 1/r . = 1/(1/r+1/r ). The authors (private communication) stress that the term
"radius" is used only as a short-hand and that in reality they are talking about
energy terms.

Conveniently, the solvent radius can be parametrised as r_ = 1600/MVol, which
means that for a typical solvent of MVol=80 to 120, r_ = 20 to 13. This takes us to
their analysis of why no correction is needed for polymers. The reason is that the
effective radii are calculated at a standard 0.5 mole fraction. Clearly the radius of
a polymer at 0.5 mole fraction is very small (because few solvents will dissolve

a polymer by that amount) so the r_. is dominated by the polymer's radius and
the solvent correction is irrelevant. This 0.5 mole fraction rule obviously gives
problems for high MPt solids and for solids tested at, say, 0.1 mole fraction,
hence the need for the second and fourth terms discussed above.

The authors are well-aware of the problems of over-fitting so a proper analysis
of prediction versus experiment was carried out, in particular looking for the
minimum number of parameters required for good fits. Of their five factors,
only the r_factor is required to get most of the benefit in terms of the quality of
fitting for the training set. For the set of data outside the training set then the
predictions required both the r_factor and the correction of MPt to produce
high-quality results. The donor/acceptor correction has a modest effect and the
quality of the overall fitting with all five parameters is impressive.

At the time of writing, it remains to be seen whether these important insights
can be extended to improve HSP in general or whether they will remain as

a valuable tool to be used only for small molecule solutes. In a refreshing
change from normal academic practice, the authors have provided their Matlab
code (and necessary demo files) so that others can try out the approach for
themselves.

3.13 The HSP of nail polish

HSP theory is not too hard, the ideas of how to measure HSP values of
industrially-interesting materials are rather simple, and the notion that two bad
solvents could create a good one makes intellectual sense. Yet there is a big
difference between accepting these ideas and acknowledging that they can work
for one's own system. So | am very grateful that the Dutch High Throughput
Formulation company, VLCI, invited me to speak at an HSP training day and to
watch the attendees do some hands-on HSP experiments. It was fascinating to
see attitudes change through the day, with a most interesting flourish at the end.



Finding a system that is safe, quick and reliable for a one-day training course is
a big challenge but Sam Peel at VLCI had the inspired idea of using an ordinary
nail polish as the "polymer" to be measured. In the days before the course

he coated a thin layer of Perfect Touch Rock Chick nail polish onto hundreds

of glass slides, resulting in samples with a tough, fairly uniform coating ready
for testing within a range of solvents. | am grateful to Sam Peel and VLCI for
permission to use the results from that training day in this chapter.

During the first part of the course, the attendees placed the coated slides into
tubes of the selected solvents and, after a reasonable time, scored them from
1 (totally dissolved) to 6 (totally untouched). One of the key worries for anyone
embarking on their first determination of an HSP is about the reliability of the
judgements about the solute being "happy" or "unhappy" in each solvent.

The data show that such concerns are, at the same time, valid whilst being
largely irrelevant. The solvents include 3 blends (for practical reasons) and the
attendees' individual scores are given in columns A-N.

Solvent A |B|C|[D|E |F [G|H (I [J |K]|L[M]|N
n-Butyl Acetate 2 (111 (21114 |4 (2 (13 (3 |1]|1 |4
GBL 2 (312 (11214 |1 (2 (2|2 ([2|3]|2 |2
DMSO 112 |15 (6 (512 |1 (6 |21 [1][1]2 |1
MEK 21414 (314 |3 |2 (3 |32 (22|11 |1
PGI-Methyl Ether 2 (5|13 (31412 |2 |3 (2|2 (2]|2]|4 |2
1-Hexanol 6 |6 |6 [6 |6 |6 |6 |[5 |6[6 [6|6]|6 |6
Benzyl Benzoate 6 [6|5|5|5]|6 |6 |6 [6[/6 |6 |6]|6 |6
Benzyl Alcohol 6 |6 |6 |5|6 [6 |6 [6 |[4]|6 |6 |66 |6
Propylene Carb 2 1412 1215 1|4 (2 |4 |3|6 |2 1|44 |4
2-Propanol 6 [6 |5 |6 |6 |6 |6 [6 [5(|5 (|6 |6]|6 |6
NMF:DMF 19:81 1 (1 |1 (1|1 |1 |1 (1 (121 ][1]1 |1
CyHex:BrN 48:52 353 |33 |5 1|5 |4 (2[4 ]2(4]4 |3
Hex: n-BA 10:90 3 (414 |4 (4|5 2 (3[4 |3 (414 |5

You can immediately see significant variations, a potential cause of worry, yet
when the mode value is taken (effectively eliminating outliers which may have
been artefacts from having to prepare so many samples) and the numbers
entered into the HSPIP software, the result is clear-cut:
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Figure 3-3 Measuring the HSP of nail polish

If those solvents scoring a "1" (really good) are used to obtain the Sphere, the
HSP of this nail polish are ~[17, 10, 7]. If the "2" values are also included then
(not shown) the HSP change to [16, 11, 6]. If individual's scores were converted
into Spheres, the results were generally not much different. If there had been
serious debate about any solvent, and a little more time, then it would have been
easy to re-test that one solvent to reach a consensus.

In reality a somewhat larger group of solvents would have been used to reduce
the uncertainties. But even in the hands of first-timers working under time
pressures, the results are not at all bad. This is typical of HSP determinations.

There is a bonus from this dataset which provided the flourish at the end of
the day. There was general agreement that both benzyl alcohol and benzyl
benzoate were bad solvents. Yet if you make a 50:50 blend the HSP are inside
the Sphere - so it should be an adequate solvent. Each attendee could choose
to make a blend of their choice. Those who chose the blend of benzyl alcohol
and benzoate found, as predicted, that these two non-solvents became an
adequate solvent.

3.14 Working with a new polymer

In 2009 | was asked to write a chapter for a book?®® on the relatively new "green"
polymer, poly(lactic acid), PLA. At the time | had not knowingly seen any PLA but
it took me less than a day to have a good overview of its solubility properties.
From a published list of "yes/no" solubility data it was easy to use HSPIP to fit

36 Steven Abbott, Chemical Compatibility of PLA: A Practical Framework Using Hansen Solubility Parameters,
Ch.7 of Auras, Lim, Selke, Tsuji (Eds), Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and
Applications, Wiley 2010



the data to find the HSP of PLA. Once | knew the HSP | could then address a
large number of issues with some confidence. That is when | found that large
amounts of work done, with good intentions (because it was a green polymer),
were predictable failures. Much unnecessary effort (and precious resource)
would have been saved if those working on PLA had taken the trouble to
understand its basic solubility properties.
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Figure 3-4 The HSP of PLA, from which many predictions could readily be made

A typical paper would say that PLA was a "hydrophobic" polymer (it is insoluble
in water) and then propose that it would work with solvents, additives or other
polymers to which it is completely unsuited. The first example (of many) was the
attempt to use a green plasticiser for this green polymer. The citrate plasticisers
are undoubtedly green so these were tried, only to prove a failure over time
because the plasticiser gradually migrated to the surface, a sure sign of mutual
incompatibility. A few moments with HSP would have shown the futility of using
the citrates. With PLA at [18.7, 7.7, 7.0] and tributyl citrate being [16.6, 3.8,10.1],
the HSP Distance is a relatively large 6.5. Triacetin has a Distance ~6. One of
the benzoates, such as dipropylene glycol dibenzoate [18.0, 6.6, 5.6] has a short
distance of 3.5 but is maybe not fully green. With very little effort | could imagine
some sort of PLA/PEO combination that would be an excellent match. Sure
enough, a patent for such a material claimed excellent compatibility and good
plasticisation. Just sitting at my desk | could do in 1 hour what some unfortunate
PhDs had failed to do in a few years of work.

Other examples included confident retro-prediction that most tallow-quaternary
nanoclays would be hopeless because they lacked any functionality that would
make the nanoclay wish to be associated with the PLA. They were justified

in the literature because tallows are hydrophobic and PLA is hydrophobic. As
expected, when | checked the literature, those nanoclays gave no desirable



properties and the one clay that might have had HSP compatibility contained
free -OH groups which would have degraded the PLA during any hot processing
step. Using the same world "hydrophobic" to describe a long-chain hydrocarbon
(the tallow chains) and a polyester was not a good idea.

| was also able to make the confident prediction that cinnamon buns would

not best be stored in PLA packaging because cinnamaldehyde is a close HSP
match to PLA. On the other hand, HSP retro-predict that lemon-flavoured goods
would be OK because the Distance from limonene is large, a result | found
confirmed experimentally.

What | wrote about controlled release for drugs in PLA is discussed in the
Diffusion chapter.

It is worth noting a failed prediction | once made about PLA. The issue at hand
was the need for a fast-acting, super-safe solvent blend, but one that was near
the edge of the solubility sphere. | was able to find such a blend and when
tested it was a complete failure. However, when that specific PLA was tested,
although its HSP values were (of course) the same as the standard value, the
solubility radius was much smaller, 4, compared to "normal" PLA (8) tested
under the same conditions. The reason was that the specific PLA was highly
crystalline, a fact | had not been told when | made the failed prediction. Using
the smaller radius it turned out to be easy to alter the ratio of the original solvent
blend, and the system worked as intended.

The sort of methodology described here for addressing broad formulation
questions on a new polymer (or new anything) is not something super clever
or rare. This is entirely normal for HSP users around the world. It is also not
something that is perfectly accurate. Such a simple approach cannot be
expected to be right all the time in complex formulations. The strength of the
approach is that it can steer you away from the sorts of guaranteed failures
that | briefly describe here (and in more detail in the PLA book chapter) so that
precious resource can be devoted to formulations less likely to fail.

3.15 HSPvialGC

Although the standard "sphere" technique for measuring HSP values works very
well for solid polymers, pigments and dispersions, it is less good for semi-liquid
materials such as oligomers, cosmetic excipients or ionic liquids that are rather
too miscible with too many solvents so that the sphere is large and ill-defined.

Fortunately, these materials have (provided they are relatively involatile)
precisely the right properties for measurement via inverse gas chromatography,
IGC. In conventional GC, a standard support material is used to distinguish
between the mix of compounds to be analysed. In IGC, the traditional GC
column material is coated with a thin layer of the sample material (which is why



it works well with oligomers, excipients and ILs) and then the retention times of
a series of known solvents such as acetone or octane are measured. The IGC
technique is described in some detail on my Practical Chromatography site,
https://www.stevenabbott.co.uk/practical-chromatography/igcbasic.php.

The retention time depends partly on the properties of the probe solvents; low
volatility solvents are retained longer than high volatility solvents, so these
intrinsic properties need to be taken into account. In addition, the compatibility of
the probe solvent with the analyte changes the retention time - more compatible
solvents spend more time within the analyte than less compatible ones. The
effect is controlled by the x parameter which, in turn, is related to the HSP
distance between the analyte and each probe solvent.

Via a series of steps, described in detail on the IGC app page, it is possible
to obtain the best match between the measured x parameters and the values
calculated from the HSP distance.

Although this technique has been known for some time, many of us found that
the calculated values were meaningless. Clearly some assumption in the chain
of logic was at fault. Work by Dr Eric Brendlé at Adscientis finally proved that

the erroneous assumption was that the support material was inert. In fact the
different probes interacted with the support materials in different ways, confusing
the analysis. With the right support material the artefacts were significantly
reduced and measured values usually make a lot of sense. No doubt further
refinements will further improve the accuracy of the computed results.
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App 3-7 https://www.stevenabbott.co.uk/practical-chromatography/hsp.php

In this example, the data on polycaprolactone from Tian and Munk is fitted with
HSP of [19.3, 5.5, 6.0].


https://www.stevenabbott.co.uk/practical-chromatography/igcbasic.php

3.16 More from the real world

The justification for using HSP is that it is easy to understand and to use,
and that it works surprisingly well across a broad range of messy, real world
problems. The Hansen Solubility website has a set of such examples (https://

www.hansen-solubility.com/HSP-examples/examples-intro.php) to illustrate and
to inspire. Some of the topics discussed on the site are:

e Carbon Black: How to measure the HSP of carbon blacks, allowing a clear
distinction between "hydrophilic" and "hydrophobic" versions.

 CNT: How to dissolve/disperse carbon nanotubes or graphene

« TiO,: How to measure/use the HSP of nanoparticles such as TiO.,,.

e Organogelators: Finding the right balance of solubility for organogelators:
neither too low (they crash out of solution) nor too high (they just become
solutes).

e OPV: Finding the right solvent blends for organophotovoltaic formulations,
especially ones that encourage phase separation of the fullerene and
polymeric components during the coating/drying process

* Green Polymers: How to characterise a new, green polymer to allow efficient
selection of plasticisers, nano-clays, drug delivery systems etc. [Discussed
above]

» Skin: Using HSP for delivery of active ingredients through skin

* DNA: Finding the best co-solvent for a DNA hybridisation process

* Flavour scalping: Identifying the probability that any given flavour (or mix of
flavours) will be lost ("scalped") through food/drink packaging. [Discussed in
the Diffusion chapter]

* QC: How to characterise different batches of the "same" polymer blend to
distinguish between good and bad batches.

» Cleaning: Choosing the best solvent (blend) for a cleaning operation

* Glove safety: Finding the best glove for resistance to a given solvent or
chemical

* Double sphere: Identifying if a polymer is best characterised as two separate
polymers via a "double sphere"

e Ceramics: Optimising a complex ceramic system.

3.17 The future for HSP

One of the many strengths of HSP is that they are simple and can, in principle,
all be done with a bunch of spreadsheets, especially because the core Hansen
dataset of ~1000 values is public domain. The evidence suggests, however, that
the HSPIP software (I acknowledge that as one of the authors | have a potential
conflict of interest in saying this) has made a big difference to the usability and
applicability of HSP. By bringing together all the standard techniques and adding
prediction tools and many sample datasets, users rapidly gain confidence in
using HSP and after 9+ years of development most day-to-day problems can be
handled naturally within the package. Indeed, the lively HSPiP community (never
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shy to send in a bug report or ask for additional functionality) has played an
active role in ensuring that the package does what most users want it to do.

Having said that, the limitations of HSP are always made clear. The current
absence of a robust donor/acceptor capability is an intellectual and practical
concern. The inability to cope with non-mean-field problems is a limitation and
HSP have never been fully comfortable in water as an outlier solvent. HSP have
no awareness of 3D structures and, as discussed earlier, there are plenty of
examples for small molecules where HSP + Ideal Solubility should work, but
doesn't. HSPiIP comes with a large eBook discussing these issues, and users
are encouraged to filter HSPiP's predictions through their own ideas of what
makes scientific sense. Computer tools exist to supplement our capabilities, not
replace them.

The next chapter discusses COSMO-RS. It is indisputable that COSMO-RS is
superior to HSP whenever accurate solubility calculations on pure molecules are
required. If a low-cost, easy-use version of COSMO-RS were to appear, much of
the rationale for using HSP on pure molecules would be removed. But it seems
a long path before a COSMO-RS approach could deal routinely with many of the
examples in the previous sections.

So HSP, for all its many faults, looks as though it has a robust future. If the latest
refinements from Hiroshi Yamamoto around donor/acceptor prove to be sound,
or if the "effective radius" approach can be incorporated into HSPIP, these
improvements would allow HSP to get closer in quality to COSMO-RS, and that
future will be extended somewhat further.



4 COSMO-RS

The theoretical structure behind HSP is full of approximations; the main
justification for using it is that it works in many situations, especially with messy
real-world formulations where there is no hope of any precise theoretical
description. With COSMO-RS we have a solubility theory that is based on

a powerful idea with far fewer approximations. For solubility questions that
feature relatively well-defined small-molecule solutes it is provably the best
tool available as it wins many of the "solubility challenges" designed to test the
capabilities of different approaches to solubility. Although that is sufficient to
recommend it, COSMO-RS comes with another key advantage - the theory can
be readily visualised so the reasons for one solvent being better than another
can be understood far better than systems which just provide numbers.

The COnductor Screening MOdel-Realistic Solvation theory starts with a
quantum mechanical calculation. This would normally be enough to stop any
formulator from going any further. First, quantum calculations are complex
and time-consuming. Second, they are in a vacuum which means they are
meaningless in terms of real solubility. COSMO-RS solves both problems very
elegantly:

« The quantum calculations only have to be done once for any molecule.

By now, these have been done for 10's of thousands of molecules and, in
particular, for all the usual solvents, so this is no longer an issue. Even for a
new molecule, with modern computers the DFT calculations generally take
only minutes.

» These calculations are done as if the molecule is surrounded by a virtual
conductor ("dielectric continuum"). This means that the molecules have
realistic surface polarization charges all around them, not the false charges
imposed by a vacuum environment.

These charges can be shown graphically in 3D and already give a strong
impression of which solvents may, or may not, interact with which solutes.
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Figure 4-1 The sigma surfaces and o-profile of three sets of solvents

The positive charge (blue) on the hydrogen of chloroform is rather obviously well
set up to match the negative charge on the C=0 of acetone, and we know that
mixing the two solvents generates heat. Diethyl ether and acetone are clearly
rather similar so they do not interact strongly with each other, and we know that
their solutions are near-ideal, i.e. their mutual activity coefficients are close to 1.
Water and hexane are obviously completely different.

Although the 3D charges, called the sigma surface, provide useful visual clues,
they aren't used directly for the solubility calculations. Instead the numbers
calculated for the o-profile graphs are used. The o-profile is a histogram of the
charge intensities around each molecule. For chloroform there is a large peak in
the positive domain representing (confusingly, but logically, the negative charge
around the molecule) while the hydrogen is the negative peak. For acetone, the
interesting peak is the positive one representing the negative carbonyl.

To simplify things greatly, COSMO-RS calculates the interaction energies
between molecules by summing the positive-to-negative attractions and positive-
to-positive repulsions from putting the surfaces in contact with each other. And
because this rather simple summation can be done on any mix of molecules,

the process identifies all the interactions in a multi-solvent mix, weighting them
depending on the proportions of solvents and solute. So not only can COSMO-
RS naturally calculate the thermodynamics of solvent-solute interactions, it

can, just like HSP, naturally handle solvent blends. This is of great practical
importance.

Some other issues such as van der Waals attractions and entropic terms are
dealt with by standard methods.



It is worth emphasising that COSMO-RS is an excellent combination of deep
thermodynamics and practicality. Yes, it requires a one-off quantum calculation
which is a bit of a nuisance, but then the results of that (slow) calculation can be
used for near-instant calculations of the thermodynamics of the solute/solvent(s)
interaction. It is far more powerful than HSP because it does everything from first
principles (no need to measure the HSP of small-molecule solutes) and provides
all relevant information such as activity coefficients or vapour-liquid equilibria.

The theory behind COSMO is precise thermodynamics, but cannot by itself
yield sufficiently precise numbers. The RS (Realistic Solvents) part comes via
parametrisation of the local polarizability and element-specific interactions (such
as dispersion). This required a considerable amount of fitting work against an
increasingly large set of high-quality experimental data that has been gathered
over the years and the 15 parameter